Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access


    CapsNet-FR: Capsule Networks for Improved Recognition of Facial Features

    Mahmood Ul Haq1, Muhammad Athar Javed Sethi1, Najib Ben Aoun2,3, Ala Saleh Alluhaidan4,*, Sadique Ahmad5,6, Zahid farid7

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2169-2186, 2024, DOI:10.32604/cmc.2024.049645

    Abstract Face recognition (FR) technology has numerous applications in artificial intelligence including biometrics, security, authentication, law enforcement, and surveillance. Deep learning (DL) models, notably convolutional neural networks (CNNs), have shown promising results in the field of FR. However CNNs are easily fooled since they do not encode position and orientation correlations between features. Hinton et al. envisioned Capsule Networks as a more robust design capable of retaining pose information and spatial correlations to recognize objects more like the brain does. Lower-level capsules hold 8-dimensional vectors of attributes like position, hue, texture, and so on, which are… More >

  • Open Access


    Hyperparameter Optimization for Capsule Network Based Modified Hybrid Rice Optimization Algorithm

    Zhiwei Ye1, Ziqian Fang1, Zhina Song1,*, Haigang Sui2, Chunyan Yan1, Wen Zhou1, Mingwei Wang1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2019-2035, 2023, DOI:10.32604/iasc.2023.039949

    Abstract Hyperparameters play a vital impact in the performance of most machine learning algorithms. It is a challenge for traditional methods to configure hyperparameters of the capsule network to obtain high-performance manually. Some swarm intelligence or evolutionary computation algorithms have been effectively employed to seek optimal hyperparameters as a combinatorial optimization problem. However, these algorithms are prone to get trapped in the local optimal solution as random search strategies are adopted. The inspiration for the hybrid rice optimization (HRO) algorithm is from the breeding technology of three-line hybrid rice in China, which has the advantages of… More >

  • Open Access


    Deep Capsule Residual Networks for Better Diagnosis Rate in Medical Noisy Images

    P. S. Arthy1,*, A. Kavitha2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2959-2971, 2023, DOI:10.32604/iasc.2023.032511

    Abstract With the advent of Machine and Deep Learning algorithms, medical image diagnosis has a new perception of diagnosis and clinical treatment. Regrettably, medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques. However, the presence of noise images degrades both the diagnosis and clinical treatment processes. The existing intelligent methods suffer from the deficiency in handling the diverse range of noise in the versatile medical images. This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alleviate this challenge.… More >

  • Open Access


    Effective Customer Review Analysis Using Combined Capsule Networks with Matrix Factorization Filtering

    K. Selvasheela1,*, A. M. Abirami2, Abdul Khader Askarunisa3

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2537-2552, 2023, DOI:10.32604/csse.2023.029148

    Abstract Nowadays, commercial transactions and customer reviews are part of human life and various business applications. The technologies create a great impact on online user reviews and activities, affecting the business process. Customer reviews and ratings are more helpful to the new customer to purchase the product, but the fake reviews completely affect the business. The traditional systems consume maximum time and create complexity while analyzing a large volume of customer information. Therefore, in this work optimized recommendation system is developed for analyzing customer reviews with minimum complexity. Here, Amazon Product Kaggle dataset information is utilized More >

  • Open Access


    Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection System

    Ala Saleh Alluhaidan1, Masoud Alajmi2, Fahd N. Al-Wesabi3,4, Anwer Mustafa Hilal5, Manar Ahmed Hamza5,*, Abdelwahed Motwakel5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2713-2727, 2022, DOI:10.32604/cmc.2022.025202

    Abstract Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any time. In this view, this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection (IAOA-DLFD) model to identify the fall/non-fall events. The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality. Besides, the IAOA with Capsule Network based More >

  • Open Access


    IoT & AI Enabled Three-Phase Secure and Non-Invasive COVID 19 Diagnosis System

    Anurag Jain1, Kusum Yadav2, Hadeel Fahad Alharbi2, Shamik Tiwari1,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 423-438, 2022, DOI:10.32604/cmc.2022.020238

    Abstract Corona is a viral disease that has taken the form of an epidemic and is causing havoc worldwide after its first appearance in the Wuhan state of China in December 2019. Due to the similarity in initial symptoms with viral fever, it is challenging to identify this virus initially. Non-detection of this virus at the early stage results in the death of the patient. Developing and densely populated countries face a scarcity of resources like hospitals, ventilators, oxygen, and healthcare workers. Technologies like the Internet of Things (IoT) and artificial intelligence can play a vital… More >

  • Open Access


    Using Capsule Networks for Android Malware Detection Through Orientation-Based Features

    Sohail Khan1,*, Mohammad Nauman2, Suleiman Ali Alsaif1, Toqeer Ali Syed3, Hassan Ahmad Eleraky1

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5345-5362, 2022, DOI:10.32604/cmc.2022.021271

    Abstract Mobile phones are an essential part of modern life. The two popular mobile phone platforms, Android and iPhone Operating System (iOS), have an immense impact on the lives of millions of people. Among these two, Android currently boasts more than 84% market share. Thus, any personal data put on it are at great risk if not properly protected. On the other hand, more than a million pieces of malware have been reported on Android in just 2021 till date. Detecting and mitigating all this malware is extremely difficult for any set of human experts. Due… More >

  • Open Access


    A Semantic Supervision Method for Abstractive Summarization

    Sunqiang Hu1, Xiaoyu Li1, Yu Deng1,*, Yu Peng1, Bin Lin2, Shan Yang3

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 145-158, 2021, DOI:10.32604/cmc.2021.017441

    Abstract In recent years, many text summarization models based on pre-training methods have achieved very good results. However, in these text summarization models, semantic deviations are easy to occur between the original input representation and the representation that passed multi-layer encoder, which may result in inconsistencies between the generated summary and the source text content. The Bidirectional Encoder Representations from Transformers (BERT) improves the performance of many tasks in Natural Language Processing (NLP). Although BERT has a strong capability to encode context, it lacks the fine-grained semantic representation. To solve these two problems, we proposed a… More >

  • Open Access


    Brain MRI Patient Identification Based on Capsule Network

    Shuqiao Liu, Junliang Li, Xiaojie Li*

    Journal on Internet of Things, Vol.2, No.4, pp. 135-144, 2020, DOI:10.32604/jiot.2020.09797

    Abstract In the deep learning field, “Capsule” structure aims to overcome the shortcomings of traditional Convolutional Neural Networks (CNN) which are difficult to mine the relationship between sibling features. Capsule Net (CapsNet) is a new type of classification network structure with “Capsule” as network elements. It uses the “Squashing” algorithm as an activation function and Dynamic Routing as a network optimization method to achieve better classification performance. The main problem of the Brain Magnetic Resonance Imaging (Brain MRI) recognition algorithm is that the difference between Alzheimer’s disease (AD) image, the Mild Cognitive Impairment (MCI) image, and… More >

  • Open Access


    GACNet: A Generative Adversarial Capsule Network for Regional Epitaxial Traffic Flow Prediction

    Jinyuan Li1, Hao Li1, Guorong Cui1, Yan Kang1, *, Yang Hu1, Yingnan Zhou2

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 925-940, 2020, DOI:10.32604/cmc.2020.09903

    Abstract With continuous urbanization, cities are undergoing a sharp expansion within the regional space. Due to the high cost, the prediction of regional traffic flow is more difficult to extend to entire urban areas. To address this challenging problem, we present a new deep learning architecture for regional epitaxial traffic flow prediction called GACNet, which predicts traffic flow of surrounding areas based on inflow and outflow information in central area. The method is data-driven, and the spatial relationship of traffic flow is characterized by dynamically transforming traffic information into images through a two-dimensional matrix. We introduce… More >

Displaying 1-10 on page 1 of 10. Per Page