Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (398)
  • Open Access

    ARTICLE

    Decoupling and Driving Forces in Economic Growth, Energy Consumption, and Carbon Emissions: Evidence from China’s BTH Region

    Hao Yue1, Di Gao2, Jin Gao1, Chengmei Wei1, Jiali Duan3, Shaocheng Mei3,*

    Energy Engineering, Vol.122, No.12, pp. 5091-5109, 2025, DOI:10.32604/ee.2025.069140 - 27 November 2025

    Abstract Against the backdrop of regional coordinated development and China’s “dual carbon” strategic objectives, the Beijing-Tianjin-Hebei (BTH) region faces an urgent need to transition from its traditional economic growth model, which is heavily reliant on resource consumption. This study investigates the decoupling dynamics among economic growth, energy consumption, and carbon emissions in the BTH region, along with the underlying driving forces, aiming to provide valuable insights for achieving the “dual carbon” targets and fostering high-quality regional development. First, the Tapio decoupling model is employed to analyze the decoupling relationships between economic growth, energy consumption, and carbon… More >

  • Open Access

    ARTICLE

    Surface Modification of Activated Carbon by Nitrogen Doping and KOH Activation for Enhanced Carbon Dioxide Adsorption Performance

    Thanattha Chobsilp1, Alongkot Treetong2, Visittapong Yordsri3, Mattana Santasnachok4,5, Pollawat Charoeythornkhajhornchai6, Jaruvit Sukkasem7, Winadda Wongwiriyapan8, Worawut Muangrat1,5,*

    Journal of Renewable Materials, Vol.13, No.11, pp. 2155-2168, 2025, DOI:10.32604/jrm.2025.02025-0111 - 24 November 2025

    Abstract Nitrogen-doped activated carbon (N-AC) was successfully prepared by KOH-activation and nitrogen doping using ammonia (NH3) heat treatment. Coconut shell-derived activated carbon (AC) was heat-treated under NH3 gas in the temperature range of 700°C–900°C. Likewise, the mixture of potassium hydroxide (KOH) and AC was heated at 800°C, followed by heat treatment under NH3 gas at 800°C (hereafter referred to as KOH-N-AC800). Scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) method were utilized to analyze morphology, crystallinity, chemical bonding, chemical composition and surface area. The surface area and porosity of N-AC increased with increasing… More >

  • Open Access

    ARTICLE

    Microwave-Assisted Synthesis, Characterization, and Performance Assessment of Lemongrass-Derived Activated Carbon for Removal of Fe and Mn from Acid Mine Drainage

    Lailan Ni`mah1,*, Sri Rachmania Juliastuti2, Mahfud Mahfud2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2169-2190, 2025, DOI:10.32604/jrm.2025.02025-0044 - 24 November 2025

    Abstract This study evaluates the effectiveness of microwave technology in producing activated carbon from lemongrass waste, an underutilized agricultural byproduct. Microwave-assisted production offers faster heating, lower energy consumption, and better process control compared to conventional methods. It also enhances pore development, resulting in larger, cleaner, and more uniform pores, making the activated carbon more effective for adsorption. The microwave-assisted process significantly accelerates production, reducing the required time to just 10 min at a power of 400 W. Activated carbon derived from lemongrass waste at 400 W exhibits a water absorption capacity of 7.88%, ash content of… More > Graphic Abstract

    Microwave-Assisted Synthesis, Characterization, and Performance Assessment of Lemongrass-Derived Activated Carbon for Removal of Fe and Mn from Acid Mine Drainage

  • Open Access

    ARTICLE

    Predicting Soil Carbon Pools in Central Iran Using Random Forest: Drivers and Uncertainty Analysis

    Shohreh Moradpour1,#, Shuai Zhao2,#, Mojgan Entezari1, Shamsollah Ayoubi3,*, Seyed Roohollah Mousavi4

    Revue Internationale de Géomatique, Vol.34, pp. 809-829, 2025, DOI:10.32604/rig.2025.069538 - 06 November 2025

    Abstract Accurate spatial prediction of soil organic carbon (SOC) and soil inorganic carbon (SIC) is vital for land management decisions. This study targets SOC/SIC mapping challenges at the watershed scale in central Iran by addressing environmental heterogeneity through a random forest (RF) model combined with bootstrapping to assess prediction uncertainty. Thirty-eight environmental variables—categorized into climatic, soil physicochemical, topographic, geomorphic, and remote sensing (RS)-based factors—were considered. Variable importance analysis (via) and partial dependence plots (PDP) identified land use, RS indices, and topography as key predictors of SOC. For SIC, soil reflectance (Bands 5 and 7, ETM+), topography, More > Graphic Abstract

    Predicting Soil Carbon Pools in Central Iran Using Random Forest: Drivers and Uncertainty Analysis

  • Open Access

    ARTICLE

    Low-Carbon Economic Dispatch of Electric-Thermal-Hydrogen Integrated Energy System Based on Carbon Emission Flow Tracking and Step-Wise Carbon Price

    Yukun Yang*, Jun He, Wenfeng Chen, Zhi Li, Kun Chen

    Energy Engineering, Vol.122, No.11, pp. 4653-4678, 2025, DOI:10.32604/ee.2025.068199 - 27 October 2025

    Abstract To address the issues of unclear carbon responsibility attribution, insufficient renewable energy absorption, and simplistic carbon trading mechanisms in integrated energy systems, this paper proposes an electric-heat-hydrogen integrated energy system (EHH-IES) optimal scheduling model considering carbon emission stream (CES) and wind-solar accommodation. First, the CES theory is introduced to quantify the carbon emission intensity of each energy conversion device and transmission branch by defining carbon emission rate, branch carbon intensity, and node carbon potential, realizing accurate tracking of carbon flow in the process of multi-energy coupling. Second, a stepped carbon pricing mechanism is established to… More >

  • Open Access

    ARTICLE

    Low-Carbon Operation Optimization of Integrated Energy System Considering Multi-Equipment Coordination and Multi-Market Interaction

    Cheng Peng1,*, Hao Qi2

    Energy Engineering, Vol.122, No.11, pp. 4579-4602, 2025, DOI:10.32604/ee.2025.067704 - 27 October 2025

    Abstract Integrated energy systems (IES) are widely regarded as a key enabler of carbon neutrality, enabling the coordinated use of electricity, heat, and gas to support large-scale renewable integration. Yet their practical deployment still faces major challenges, including rigid thermoelectric coupling, insufficient operational flexibility, and fragmented carbon and certificate market mechanisms. To address these issues, this study proposes a low-carbon economic dispatch model for integrated energy systems (IES) that reduces emissions and costs while improving renewable energy utilization. A coordinated framework integrating carbon capture, utilization, and storage, two-stage power-to-gas, combined heat and power, and ground-source heat… More > Graphic Abstract

    Low-Carbon Operation Optimization of Integrated Energy System Considering Multi-Equipment Coordination and Multi-Market Interaction

  • Open Access

    ARTICLE

    Coordinated Scheduling of Electric-Hydrogen-Heat Trigeneration System for Low-Carbon Building Based on Improved Reinforcement Learning

    Jiayun Ding, Bin Chen*, Yutong Lei, Wei Zhang

    Energy Engineering, Vol.122, No.11, pp. 4561-4577, 2025, DOI:10.32604/ee.2025.067574 - 27 October 2025

    Abstract In the field of low-carbon building systems, the combination of renewable energy and hydrogen energy systems is gradually gaining prominence. However, the uncertainty of supply and demand and the multi-energy flow coupling characteristics of this system pose challenges for its optimized scheduling. In light of this, this study focuses on electro-thermal-hydrogen trigeneration systems, first modelling the system’s scheduling optimization problem as a Markov decision process, thereby transforming it into a sequential decision problem. Based on this, this paper proposes a reinforcement learning algorithm based on deep deterministic policy gradient improvement, aiming to minimize system operating… More >

  • Open Access

    ARTICLE

    Innovative Biobased Composites from Oil Palm Trunk: Enhancing Mechanical and Flame-Retardant Properties through Optimized Additive Treatments

    Madihan Yusof1,2,3,*, Muhamad Saiful Sulaiman1,3, Ros Syazmini Mohd Ghani1,3,4, Sofiyah Mohd Razali1,5

    Journal of Renewable Materials, Vol.13, No.10, pp. 2059-2075, 2025, DOI:10.32604/jrm.2025.02025-0101 - 22 October 2025

    Abstract This study investigates the development of an oil palm trunk (OPT) high-performance flame-retardant composite derived from an inexpensive and sustainable biomass source, processed using sodium chloride (NaCl) as a low-cost flame retardant, polyvinyl alcohol (PVA) as an adhesive, and calcium carbonate (CaCO3) as an additive. The work aims to address the inherent flammability of OPT and to enhance its mechanical performance, dimensional stability, and fire resistance in an environmentally friendly and cost-effective manner. Results indicate that a 10% NaCl treatment optimally improves the performance of the composite, increasing bending strength (MOR) from 5.95 to 12.61 MPa… More > Graphic Abstract

    Innovative Biobased Composites from Oil Palm Trunk: Enhancing Mechanical and Flame-Retardant Properties through Optimized Additive Treatments

  • Open Access

    ARTICLE

    High Lignin Content Polymer Filaments as Carbon Fibre Precursors

    Rui Ribeiro1,*, Miguel Guerreiro2, Renato Reis2, Joana T. Martins3,4, Jorge M. Vieira3,4, Mariana Martins da Silva1, José A. Covas1, Maria C. Paiva1,*

    Journal of Renewable Materials, Vol.13, No.10, pp. 1859-1880, 2025, DOI:10.32604/jrm.2025.02025-0071 - 22 October 2025

    Abstract The growing environmental awareness, the search for alternatives to fossil resources, and the goal of achieving a circular economy have all contributed to the increasing valorization of biowaste to produce bio-based polymers and other high-value products. Among the various biowaste materials, lignin has gained significant attention due to its high aromatic carbon content, low cost, and abundance. Lignin is predominantly sourced as a byproduct from the paper industry, available in large quantities from hardwood and softwood, with variations in chemical structure and susceptibility to hydrolysis. This study focuses on softwood lignin obtained through the LignoForce™… More > Graphic Abstract

    High Lignin Content Polymer Filaments as Carbon Fibre Precursors

  • Open Access

    REVIEW

    Biomass-Derived Carbon-Based Nanomaterials: Current Research, Trends, and Challenges

    Robyn Lesch1, Evan David Visser1, Ntalane Sello Seroka1,2,*, Lindiwe Khotseng1,*

    Journal of Renewable Materials, Vol.13, No.10, pp. 1935-1977, 2025, DOI:10.32604/jrm.2025.02025-0026 - 22 October 2025

    Abstract The review investigates the use of biomass-derived carbon as precursors for nanomaterials, acknowledging their sustainability and eco-friendliness. It examines various types of biomasses, such as agricultural residues and food byproducts, focussing on their transformation via environmentally friendly methods such as pyrolysis and hydrothermal carbonisation. Innovations in creating porous carbon nanostructures and heteroatom surface functionalisation are identified, enhancing catalytic performance. The study also explores the integration of biomass-derived carbon with nanomaterials for energy storage, catalysis, and other applications, noting the economic and environmental benefits. Despite these advantages, challenges persist in optimising synthesis methods and scaling production. More > Graphic Abstract

    Biomass-Derived Carbon-Based Nanomaterials: Current Research, Trends, and Challenges

Displaying 1-10 on page 1 of 398. Per Page