Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Boosting Structural and Dielectric Properties of Polyvinyl Alcohol/Starch/Carboxymethyl Cellulose Films with Iron-Doped Carbon Quantum Dots for Advanced Applications

    Lekaa K. Abdul Karem1, Badriah Saad Al-Farhan2, Ghada M. G. Eldin3, Samir Kamel4, Ahmed M. Khalil5,*

    Journal of Renewable Materials, Vol.13, No.7, pp. 1459-1473, 2025, DOI:10.32604/jrm.2025.02025-0046 - 22 July 2025

    Abstract In this study, the casting process is used to fabricate modified polyvinyl alcohol (PVA), starch (S), and carboxymethyl cellulose (CMC) polymer blend films (PVA/S/CMC) loaded with various concentrations of iron-doped carbon quantum dots (Fe-CQDs) and denoted as (PVA/S/CMC@Fe-CQDs). A one-step microwave strategy was employed as a facile method to prepare Fe-CQDs. Through a series of characterization techniques, fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) have been used to show the successful integration of Fe-CQDs into the PVA/S/CMC matrix. Loading the synthesized Fe-CQDs to the polymeric matrix significantly enhanced the… More > Graphic Abstract

    Boosting Structural and Dielectric Properties of Polyvinyl Alcohol/Starch/Carboxymethyl Cellulose Films with Iron-Doped Carbon Quantum Dots for Advanced Applications

  • Open Access

    ARTICLE

    Nanofibrillation of Bacterial Cellulose Using High-Pressure Homogenization and Its Films Characteristics

    Heru Suryanto1,2,*, Muhamad Muhajir1, Bili Darnanto Susilo1, Yanuar Rohmat Aji Pradana1, Husni Wahyu Wijaya2,3, Abu Saad Ansari4, Uun Yanuhar5

    Journal of Renewable Materials, Vol.9, No.10, pp. 1717-1728, 2021, DOI:10.32604/jrm.2021.015312 - 12 May 2021

    Abstract The microstructure of bacterial cellulose nanofibers (BCNs) film affects its characteristic. One of several means to engineer the microstructure is by changing the BCNs size and fiber distribution through a high-pressure homogenizer (HPH) process. This research aimed to find out the effects of repetition cycles on HPH process towards BCNs film characteristics. To prepare BCNs films, a pellicle from the fermentation of pineapple peels waste with Acetobacter xylinum (A. xylinum) was extracted, followed by crushing the pellicle with a high-speed blender, thereafter, homogenized using HPH at 150 bar pressure with variations of 5, 10, 15, and 20… More >

  • Open Access

    ARTICLE

    Preparation of Corn Cellulose Films with Controllable Mechanical Property by Using Switchable CO2 /DBU/ DMSO System

    BAOHAI PAN1,2, JUNCHENG HUANG1, LAI CHEN2, FEI LIU1,*, CHEN JING, HAINING NA1,*, JIN ZHU1

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 17-27, 2020, DOI:10.32381/JPM.2020.37.1-2.2

    Abstract A switchable CO2 /1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/dimethyl sulfoxide (DMSO) solvent system is applied to prepare corn cellulose film with controllable mechanical property. By use of the switchable CO2 /DBU/DMSO system, a rather simple process concerning reacted dissolution and heated precipitation controlled by addition and releasing of CO2 respectively, to prepare corn cellulose film, is formed. Results exhibit the degree of dissolution of corn cellulose is easily controlled just by adjusting the feeding amount of DBU in the switchable solvent system. Accordingly, some undissolved part of corn cellulose with relative high crystallinity can be appropriately retained to contribute to the More >

Displaying 1-10 on page 1 of 3. Per Page