Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Simple Cement Hydration Model Considering the Influences of Water-to-Cement Ratio and Mineral Composition

    Baoyu Ma1,*, Guansuo Dui2, Zhenglin Jia1, Bo Yang1, Chunyan Yang1, Quangui Gao1, Longhua Qin1, Ju Ma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.3, pp. 1059-1067, 2021, DOI:10.32604/cmes.2021.015776

    Abstract A simple hydration model is used here by taking the composition of the cement and the initial water: cement ratio (w/c) into account explicitly. Its conceptual basis is a combination of the Avrami equation and Bentz’s model based on simple spatial considerations. In this model, the Avrami equation determines the initial reaction, and Bentz’s model describes the following hydration stage. The model favors engineers for it relies on one experimental parameter and has a reliable approximation in the practice. More >

  • Open Access

    ARTICLE

    Coupled Effects of Heat and Moisture of Early-Age Concrete

    Yang Wang1, Hanxi Wang2,*, Linwei Yang1, Li Qian1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.4, pp. 845-857, 2021, DOI:10.32604/fdmp.2021.015961

    Abstract In order to analyze the coupled influence of temperature and humidity on early-age concrete (including cement and copper tailings), a mathematical model is introduced on the basis of the Krstulovic-Dabic hydration reaction kinetic equations. In such a framework, the influence of hydration-released heat and water consumption are also taken into account. The results provided by such a model are verified by means of experiments and related sensor measurements. The research results show that this model can adequately predict the internal temperature and the humidity temporal evolution laws. More >

Displaying 1-10 on page 1 of 2. Per Page