Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    BotSward: Centrality Measures for Graph-Based Bot Detection Using Machine Learning

    Khlood Shinan1,2, Khalid Alsubhi2, M. Usman Ashraf3,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 693-714, 2023, DOI:10.32604/cmc.2023.031641

    Abstract The number of botnet malware attacks on Internet devices has grown at an equivalent rate to the number of Internet devices that are connected to the Internet. Bot detection using machine learning (ML) with flow-based features has been extensively studied in the literature. Existing flow-based detection methods involve significant computational overhead that does not completely capture network communication patterns that might reveal other features of malicious hosts. Recently, Graph-Based Bot Detection methods using ML have gained attention to overcome these limitations, as graphs provide a real representation of network communications. The purpose of this study… More >

  • Open Access


    Complex Network Formation and Analysis of Online Social Media Systems

    Hafiz Abid Mahmood Malik*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1737-1750, 2022, DOI:10.32604/cmes.2022.018015

    Abstract To discover and identify the influential nodes in any complex network has been an important issue. It is a significant factor in order to control over the network. Through control on a network, any information can be spread and stopped in a short span of time. Both targets can be achieved, since network of information can be extended and as well destroyed. So, information spread and community formation have become one of the most crucial issues in the world of SNA (Social Network Analysis). In this work, the complex network of twitter social network has… More >

Displaying 1-10 on page 1 of 2. Per Page