Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (325)
  • Open Access

    ARTICLE

    Performance Evaluation of the Hybrid Heat Pump to Decarbonize the Buildings Sector: Energetic, Environmental and Economic Characterization

    Miriam Di Matteo*, Domiziana Vespasiano, Gianluigi Lo Basso, Costanza Vittoria Fiorini, Andrea Vallati

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.064353 - 27 January 2026

    Abstract Decarbonising the building sector, particularly residential heating, represents a critical challenge for achieving carbon-neutral energy systems. Efficient solutions must integrate both technological performance and renewable energy sources while considering operational constraints of existing systems. This study investigates a hybrid heating system combining a natural gas boiler (NGB) with an air-to-water heat pump (AWHP), evaluated through a combination of laboratory experiments and dynamic modelling. A prototype developed in the Electrical and Energy Engineering Laboratory enabled the characterization of both heat generators, the collection of experimental data, and the calibration of a MATLAB/Simulink model, including emissions and… More >

  • Open Access

    ARTICLE

    Machine Learning Based Simulation, Synthesis, and Characterization of Zinc Oxide/Graphene Oxide Nanocomposite for Energy Storage Applications

    Tahir Mahmood1,*, Muhammad Waseem Ashraf1,*, Shahzadi Tayyaba2, Muhammad Munir3, Babiker M. A. Abdel-Banat3, Hassan Ali Dinar3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072436 - 12 January 2026

    Abstract Artificial intelligence (AI) based models have been used to predict the structural, optical, mechanical, and electrochemical properties of zinc oxide/graphene oxide nanocomposites. Machine learning (ML) models such as Artificial Neural Networks (ANN), Support Vector Regression (SVR), Multilayer Perceptron (MLP), and hybrid, along with fuzzy logic tools, were applied to predict the different properties like wavelength at maximum intensity (444 nm), crystallite size (17.50 nm), and optical bandgap (2.85 eV). While some other properties, such as energy density, power density, and charge transfer resistance, were also predicted with the help of datasets of 1000 (80:20). In… More >

  • Open Access

    ARTICLE

    Coupled Effects of Single-Vacancy Defect Positions on the Mechanical Properties and Electronic Structure of Aluminum Crystals

    Binchang Ma1, Xinhai Yu2, Gang Huang3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071320 - 10 November 2025

    Abstract Vacancy defects, as fundamental disruptions in metallic lattices, play an important role in shaping the mechanical and electronic properties of aluminum crystals. However, the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood. In this study, transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys, suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation. To complement these observations, first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum. The stress response, total energy, density of states More >

  • Open Access

    PROCEEDINGS

    Mechanical Characterisation and Material Modelling of Human Aortas with Vascular Smooth Muscle Activation

    Ivan Breslavsky1,*, Giulio Franchini2, Francesco Giovanniello3, Ali Kassab3,4, Gerhard A. Holzapfel5,6, Marco Amabili1,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012190

    Abstract Despite the critical role of vascular smooth muscle (VSM) activation in the biomechanics of human aortas, comprehensive experimental data and corresponding active material models remain limited. This study addresses this gap by presenting a detailed mechanical characterisation of human descending thoracic aortas under both passive and VSM-activated conditions.
    Specimens were obtained from thirteen heart-beating donors. Mechanical testing was conducted within hours of explantation. VSM activation was induced using potassium chloride and noradrenaline, and both isometric and quasistatic stress–strain responses were measured in circumferential and longitudinal tissue strips.
    Dynamic mechanical testing under physiologically relevant cyclic loading and More >

  • Open Access

    PROCEEDINGS

    In-Vivo Chromophore Characterization of the Human Skin

    Qiaoyun Yu, Shibin Wang*, Zhiyong Wang, Chuanwei Li, Linan Li

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011080

    Abstract The concentration of chromophores in the human skin provides crucial information for non-invasive skin diagnostics, particularly in clinical and dermatological applications [1,2]. However, only a few studies have reported chromophore concentration measurements at different skin depths [3,4]. This paper introduces a method for the tomographic measurement of skin chromophore concentrations using reflectance spectra. By considering the variations in hemoglobin content at different skin depths, we developed a dual-band skin reflectance spectral model and employed a hyperspectral camera to measure the in vivo spectral reflectance of the human skin. Chromophores including oxyhemoglobin, deoxyhemoglobin, blood oxygen, and melanin… More >

  • Open Access

    ARTICLE

    Genome-Wide Identification and Functional Characterization of UGT Gene Family in Sorghum bicolor with Insights into SbUGT12’s Role in C4 Photosynthesis

    Wenxiang Zhang1,2, Wenning Cui1, Juan Huang3, Zhangen Lu1, Kuijing Liang1, Lingbao Wang1,2, Shanshan Wei1,2, Liran Shi1, Huifen Li1, Xiaoli Guo1,2,*, Jianhui Ma4,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3893-3912, 2025, DOI:10.32604/phyton.2025.073736 - 29 December 2025

    Abstract UDP-glycosyltransferases (UGTs) play essential roles in plant secondary metabolism and stress responses, yet their composition and functions in Sorghum bicolor, a model C4 plant, remain inadequately characterized. This study identified 196 SbUGT genes distributed across all 10 chromosomes and classified them into 16 subfamilies (A–P) through phylogenetic analysis. Among these, 61.2% were intronless, and 10 conserved motifs, including the UGT-specific PSPG box, were identified. Synteny analysis using MCScanX revealed 12 segmental duplication events and conserved syntenic relationships with other Poaceae species (rice, maize, and barley). Promoter analysis uncovered 125 distinct cis-acting elements, predominantly associated with stress and… More >

  • Open Access

    ARTICLE

    Synthesis and characterizations of Cu2BaSnS4 nanoparticles via solvothermal route

    G. Hao*, Z. Chen, R. Xian, W. Yifan

    Chalcogenide Letters, Vol.22, No.3, pp. 255-260, 2025, DOI:10.15251/CL.2025.223.255

    Abstract In present work, Cu2BaSnS4(CBTS) nanoparticles are reported solvothermally synthesized. The formation of single-phase trigonal structure of CBTS nanoparticles is confirmed by XRD and Raman spectroscopic analysis. SEM studies reveal that CBTS exhibits flower shaped structure self-assembling by nanosheets with uniform average thickness 30nm. CBTS materials show abroad absorption in the complete visible range, providing a band-gap value of 1.58eV, indicating potential applications in photocvoltaics. The excellent MB degradation efficiency of 93% under visible light within 100min is achieved, suggesting CBTS is a potential material for effective solar light photocatalytic application. Meanwhile, electrical properties are measured up More >

  • Open Access

    ARTICLE

    The effect of aluminum doping on nanostructured CdS: optical, structural and sensing characterization

    H. R. Shakira, O. A. Chichanb, M. S. Sadac,*, S. A. Husseind, S. S. Chiade, N. F. Habubif, Y. H. Kadhimg, M. Jadanh,i

    Chalcogenide Letters, Vol.22, No.1, pp. 77-89, 2025, DOI:10.15251/CL.2025.221.77

    Abstract CdS, and CdS: Al were grown onto glass bases via Chemical spray pyrolysis (CSP). XRD analysis of CdS films indicates a polycrystalline hexagonal structure with a predominant orientation of the (101) plane. The strain decreased from 28.55 to 25.66, and the grain size of undoped CdS films was around (13.51–12.14) nm as Al content rose. According to the results of AFM, CdS, CdS:2% Al, and CdS:4% Al all exhibit smooth surfaces with decreasing particle size in the range of (78.46), (69.75), and (42.20) nm, respectively. The root-mean-square roughness values for CdS and CdS:4% Al were… More >

  • Open Access

    REVIEW

    It’s in the blood: plasma as a source for biochemical identification and biological characterization of novel leukocyte chemoattractants

    Jo Van Damme1, Stijn Van Damme2, Soffe Struyf1, Ghislain Opdenakker3

    European Cytokine Network, Vol.36, No.1, pp. 6-14, 2025, DOI:10.1684/ecn.2025.0501

    Abstract Since their discovery, chemotactic cytokines or chemokines have been intensively studied for about half a century. Chemokines originate from tissue cells, leukocytes, blood platelets and plasma. Here, we review a number of seminal findings on plasma chemokines within an historical and international context. These aspects include how induction and purification protocols led to the discovery of a new family of mediators, named chemokines, on the basis of protein sequencing; how molecular cloning techniques facilitated discoveries of additional family members on the basis of conserved protein structures; how blood plasma and platelets were used as a More >

  • Open Access

    ARTICLE

    Fabrication and characterization of Cu (In, Ga) Se2 thin films by electrodeposition: optimization of the thermal treatment with selenium and mechanical disturbance technique

    A. Ledesma-Juáreza, J. F. Quintero-Guerrerob, A. M. Fernándeza,*

    Chalcogenide Letters, Vol.22, No.2, pp. 97-108, 2025, DOI:10.15251/CL.2025.222.97

    Abstract The evaporation technique fabricates solar cells using the Cu(In, Ga)Se2 (CIGS) absorber. This technique has strong limitations in preparing this absorber in a large area, necessitating the electrodeposition technique. However, the morphology and crystallinity of this absorber need to be sufficiently adequate to guarantee proper collection of charge carriers since a cauliflower-type growth is favored. This underscores the need for modifications during the synthesis, thermal treatments, and post-synthesis to improve the morphology and crystallinity, a complex and significant aspect of our research. This work discusses the structural, atomic composition, morphological, and optical results obtained for samples More >

Displaying 1-10 on page 1 of 325. Per Page