Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    ARTICLE

    Evolutionary Intelligence and Deep Learning Enabled Diabetic Retinopathy Classification Model

    Bassam A. Y. Alqaralleh1,*, Fahad Aldhaban1, Anas Abukaraki2, Esam A. AlQaralleh3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 87-101, 2022, DOI:10.32604/cmc.2022.026729 - 18 May 2022

    Abstract Diabetic Retinopathy (DR) has become a widespread illness among diabetics across the globe. Retinal fundus images are generally used by physicians to detect and classify the stages of DR. Since manual examination of DR images is a time-consuming process with the risks of biased results, automated tools using Artificial Intelligence (AI) to diagnose the disease have become essential. In this view, the current study develops an Optimal Deep Learning-enabled Fusion-based Diabetic Retinopathy Detection and Classification (ODL-FDRDC) technique. The intention of the proposed ODL-FDRDC technique is to identify DR and categorize its different grades using retinal More >

  • Open Access

    ARTICLE

    Feature Subset Selection with Artificial Intelligence-Based Classification Model for Biomedical Data

    Jaber S. Alzahrani1, Reem M. Alshehri2, Mohammad Alamgeer3, Anwer Mustafa Hilal4,*, Abdelwahed Motwakel4, Ishfaq Yaseen4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4267-4281, 2022, DOI:10.32604/cmc.2022.027369 - 21 April 2022

    Abstract Recently, medical data classification becomes a hot research topic among healthcare professionals and research communities, which assist in the disease diagnosis and decision making process. The latest developments of artificial intelligence (AI) approaches paves a way for the design of effective medical data classification models. At the same time, the existence of numerous features in the medical dataset poses a curse of dimensionality problem. For resolving the issues, this article introduces a novel feature subset selection with artificial intelligence based classification model for biomedical data (FSS-AICBD) technique. The FSS-AICBD technique intends to derive a useful… More >

  • Open Access

    ARTICLE

    Automated Artificial Intelligence Empowered Colorectal Cancer Detection and Classification Model

    Mahmoud Ragab1,2,3,*, Ashwag Albukhari2,4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5577-5591, 2022, DOI:10.32604/cmc.2022.026715 - 21 April 2022

    Abstract Colorectal cancer is one of the most commonly diagnosed cancers and it develops in the colon region of large intestine. The histopathologist generally investigates the colon biopsy at the time of colonoscopy or surgery. Early detection of colorectal cancer is helpful to maintain the concept of accumulating cancer cells. In medical practices, histopathological investigation of tissue specimens generally takes place in a conventional way, whereas automated tools that use Artificial Intelligence (AI) techniques can produce effective results in disease detection performance. In this background, the current study presents an Automated AI-empowered Colorectal Cancer Detection and… More >

  • Open Access

    ARTICLE

    Intelligent Deep Transfer Learning Based Malaria Parasite Detection and Classification Model Using Biomedical Image

    Ahmad Alassaf, Mohamed Yacin Sikkandar*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5273-5285, 2022, DOI:10.32604/cmc.2022.025577 - 21 April 2022

    Abstract Malaria is a severe disease caused by Plasmodium parasites, which can be detected through blood smear images. The early identification of the disease can effectively reduce the severity rate. Deep learning (DL) models can be widely employed to analyze biomedical images, thereby minimizing the misclassification rate. With this objective, this study developed an intelligent deep-transfer-learning-based malaria parasite detection and classification (IDTL-MPDC) model on blood smear images. The proposed IDTL-MPDC technique aims to effectively determine the presence of malarial parasites in blood smear images. In addition, the IDTL-MPDC technique derives median filtering (MF) as a pre-processing… More >

  • Open Access

    ARTICLE

    Fuzzy Logic with Archimedes Optimization Based Biomedical Data Classification Model

    Mahmoud Ragab1,2,3,*, Diaa Hamed4,5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 4185-4200, 2022, DOI:10.32604/cmc.2022.027074 - 29 March 2022

    Abstract Medical data classification becomes a hot research topic in the healthcare sector to aid physicians in the healthcare sector for decision making. Besides, the advances of machine learning (ML) techniques assist to perform the effective classification task. With this motivation, this paper presents a Fuzzy Clustering Approach Based on Breadth-first Search Algorithm (FCA-BFS) with optimal support vector machine (OSVM) model, named FCABFS-OSVM for medical data classification. The proposed FCABFS-OSVM technique intends to classify the healthcare data by the use of clustering and classification models. Besides, the proposed FCABFS-OSVM technique involves the design of FCABFS technique More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images

    Areej A. Malibari1, Reem Alshahrani2, Fahd N. Al-Wesabi3,*, Siwar Ben Haj Hassine3, Mimouna Abdullah Alkhonaini4, Anwer Mustafa Hilal5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3799-3813, 2022, DOI:10.32604/cmc.2022.026131 - 29 March 2022

    Abstract Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized More >

  • Open Access

    ARTICLE

    Intelligent Deep Data Analytics Based Remote Sensing Scene Classification Model

    Ahmed Althobaiti1, Abdullah Alhumaidi Alotaibi2, Sayed Abdel-Khalek3, Suliman A. Alsuhibany4, Romany F. Mansour5,*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1921-1938, 2022, DOI:10.32604/cmc.2022.025550 - 24 February 2022

    Abstract Latest advancements in the integration of camera sensors paves a way for new Unmanned Aerial Vehicles (UAVs) applications such as analyzing geographical (spatial) variations of earth science in mitigating harmful environmental impacts and climate change. UAVs have achieved significant attention as a remote sensing environment, which captures high-resolution images from different scenes such as land, forest fire, flooding threats, road collision, landslides, and so on to enhance data analysis and decision making. Dynamic scene classification has attracted much attention in the examination of earth data captured by UAVs. This paper proposes a new multi-modal fusion… More >

  • Open Access

    ARTICLE

    Artificial Intelligence-Based Fusion Model for Paddy Leaf Disease Detection and Classification

    Ahmed S. Almasoud1, Abdelzahir Abdelmaboud2, Taiseer Abdalla Elfadil Eisa3, Mesfer Al Duhayyim4, Asma Abbas Hassan Elnour5, Manar Ahmed Hamza6,*, Abdelwahed Motwakel6, Abu Sarwar Zamani6

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1391-1407, 2022, DOI:10.32604/cmc.2022.024618 - 24 February 2022

    Abstract In agriculture, rice plant disease diagnosis has become a challenging issue, and early identification of this disease can avoid huge loss incurred from less crop productivity. Some of the recently-developed computer vision and Deep Learning (DL) approaches can be commonly employed in designing effective models for rice plant disease detection and classification processes. With this motivation, the current research work devises an Efficient Deep Learning based Fusion Model for Rice Plant Disease (EDLFM-RPD) detection and classification. The aim of the proposed EDLFM-RPD technique is to detect and classify different kinds of rice plant diseases in… More >

  • Open Access

    ARTICLE

    Optimized Deep Learning Model for Colorectal Cancer Detection and Classification Model

    Mahmoud Ragab1,2,3,*, Khalid Eljaaly4, Maha Farouk S. Sabir5, Ehab Bahaudien Ashary6, S. M. Abo-Dahab7,8, E. M. Khalil3,9

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5751-5764, 2022, DOI:10.32604/cmc.2022.024658 - 14 January 2022

    Abstract The recent developments in biological and information technologies have resulted in the generation of massive quantities of data it speeds up the process of knowledge discovery from biological systems. Due to the advancements of medical imaging in healthcare decision making, significant attention has been paid by the computer vision and deep learning (DL) models. At the same time, the detection and classification of colorectal cancer (CC) become essential to reduce the severity of the disease at an earlier stage. The existing methods are commonly based on the combination of textual features to examine the classifier… More >

  • Open Access

    ARTICLE

    Intelligent Classification Model for Biomedical Pap Smear Images on IoT Environment

    CSS Anupama1, T. J. Benedict Jose2, Heba F. Eid3, Nojood O Aljehane4, Fahd N. Al-Wesabi5,*, Marwa Obayya6, Anwer Mustafa Hilal7

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3969-3983, 2022, DOI:10.32604/cmc.2022.022701 - 07 December 2021

    Abstract Biomedical images are used for capturing the images for diagnosis process and to examine the present condition of organs or tissues. Biomedical image processing concepts are identical to biomedical signal processing, which includes the investigation, improvement, and exhibition of images gathered using x-ray, ultrasound, MRI, etc. At the same time, cervical cancer becomes a major reason for increased women's mortality rate. But cervical cancer is an identified at an earlier stage using regular pap smear images. In this aspect, this paper devises a new biomedical pap smear image classification using cascaded deep forest (BPSIC-CDF) model… More >

Displaying 41-50 on page 5 of 60. Per Page