Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access


    Fuzzy Logic with Archimedes Optimization Based Biomedical Data Classification Model

    Mahmoud Ragab1,2,3,*, Diaa Hamed4,5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 4185-4200, 2022, DOI:10.32604/cmc.2022.027074

    Abstract Medical data classification becomes a hot research topic in the healthcare sector to aid physicians in the healthcare sector for decision making. Besides, the advances of machine learning (ML) techniques assist to perform the effective classification task. With this motivation, this paper presents a Fuzzy Clustering Approach Based on Breadth-first Search Algorithm (FCA-BFS) with optimal support vector machine (OSVM) model, named FCABFS-OSVM for medical data classification. The proposed FCABFS-OSVM technique intends to classify the healthcare data by the use of clustering and classification models. Besides, the proposed FCABFS-OSVM technique involves the design of FCABFS technique to cluster the medical data… More >

  • Open Access


    Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images

    Areej A. Malibari1, Reem Alshahrani2, Fahd N. Al-Wesabi3,*, Siwar Ben Haj Hassine3, Mimouna Abdullah Alkhonaini4, Anwer Mustafa Hilal5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3799-3813, 2022, DOI:10.32604/cmc.2022.026131

    Abstract Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized for classification process where the… More >

  • Open Access


    Intelligent Deep Data Analytics Based Remote Sensing Scene Classification Model

    Ahmed Althobaiti1, Abdullah Alhumaidi Alotaibi2, Sayed Abdel-Khalek3, Suliman A. Alsuhibany4, Romany F. Mansour5,*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1921-1938, 2022, DOI:10.32604/cmc.2022.025550

    Abstract Latest advancements in the integration of camera sensors paves a way for new Unmanned Aerial Vehicles (UAVs) applications such as analyzing geographical (spatial) variations of earth science in mitigating harmful environmental impacts and climate change. UAVs have achieved significant attention as a remote sensing environment, which captures high-resolution images from different scenes such as land, forest fire, flooding threats, road collision, landslides, and so on to enhance data analysis and decision making. Dynamic scene classification has attracted much attention in the examination of earth data captured by UAVs. This paper proposes a new multi-modal fusion based earth data classification (MMF-EDC)… More >

  • Open Access


    Artificial Intelligence-Based Fusion Model for Paddy Leaf Disease Detection and Classification

    Ahmed S. Almasoud1, Abdelzahir Abdelmaboud2, Taiseer Abdalla Elfadil Eisa3, Mesfer Al Duhayyim4, Asma Abbas Hassan Elnour5, Manar Ahmed Hamza6,*, Abdelwahed Motwakel6, Abu Sarwar Zamani6

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1391-1407, 2022, DOI:10.32604/cmc.2022.024618

    Abstract In agriculture, rice plant disease diagnosis has become a challenging issue, and early identification of this disease can avoid huge loss incurred from less crop productivity. Some of the recently-developed computer vision and Deep Learning (DL) approaches can be commonly employed in designing effective models for rice plant disease detection and classification processes. With this motivation, the current research work devises an Efficient Deep Learning based Fusion Model for Rice Plant Disease (EDLFM-RPD) detection and classification. The aim of the proposed EDLFM-RPD technique is to detect and classify different kinds of rice plant diseases in a proficient manner. In addition,… More >

  • Open Access


    Optimized Deep Learning Model for Colorectal Cancer Detection and Classification Model

    Mahmoud Ragab1,2,3,*, Khalid Eljaaly4, Maha Farouk S. Sabir5, Ehab Bahaudien Ashary6, S. M. Abo-Dahab7,8, E. M. Khalil3,9

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5751-5764, 2022, DOI:10.32604/cmc.2022.024658

    Abstract The recent developments in biological and information technologies have resulted in the generation of massive quantities of data it speeds up the process of knowledge discovery from biological systems. Due to the advancements of medical imaging in healthcare decision making, significant attention has been paid by the computer vision and deep learning (DL) models. At the same time, the detection and classification of colorectal cancer (CC) become essential to reduce the severity of the disease at an earlier stage. The existing methods are commonly based on the combination of textual features to examine the classifier results or machine learning (ML)… More >

  • Open Access


    Intelligent Classification Model for Biomedical Pap Smear Images on IoT Environment

    CSS Anupama1, T. J. Benedict Jose2, Heba F. Eid3, Nojood O Aljehane4, Fahd N. Al-Wesabi5,*, Marwa Obayya6, Anwer Mustafa Hilal7

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3969-3983, 2022, DOI:10.32604/cmc.2022.022701

    Abstract Biomedical images are used for capturing the images for diagnosis process and to examine the present condition of organs or tissues. Biomedical image processing concepts are identical to biomedical signal processing, which includes the investigation, improvement, and exhibition of images gathered using x-ray, ultrasound, MRI, etc. At the same time, cervical cancer becomes a major reason for increased women's mortality rate. But cervical cancer is an identified at an earlier stage using regular pap smear images. In this aspect, this paper devises a new biomedical pap smear image classification using cascaded deep forest (BPSIC-CDF) model on Internet of Things (IoT)… More >

  • Open Access


    Intelligent Machine Learning Based EEG Signal Classification Model

    Mesfer Al Duhayyim1, Haya Mesfer Alshahrani2, Fahd N. Al-Wesabi3, Mohammed Abdullah Al-Hagery4, Anwer Mustafa Hilal5,*, Abu Sarwar Zaman5

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1821-1835, 2022, DOI:10.32604/cmc.2022.021119

    Abstract In recent years, Brain-Computer Interface (BCI) system gained much popularity since it aims at establishing the communication between human brain and computer. BCI systems are applied in several research areas such as neuro-rehabilitation, robots, exoeskeletons, etc. Electroencephalography (EEG) is a technique commonly applied in capturing brain signals. It is incorporated in BCI systems since it has attractive features such as non-invasive nature, high time-resolution output, mobility and cost-effective. EEG classification process is highly essential in decision making process and it incorporates different processes namely, feature extraction, feature selection, and classification. With this motivation, the current research paper presents an Intelligent… More >

  • Open Access


    An Automated Deep Learning Based Muscular Dystrophy Detection and Classification Model

    T. Gopalakrishnan1, Periakaruppan Sudhakaran2, K. C. Ramya3, K. Sathesh Kumar4, Fahd N. Al-Wesabi5,6,*, Manal Abdullah Alohali7, Anwer Mustafa Hilal8

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 305-320, 2022, DOI:10.32604/cmc.2022.020914

    Abstract Muscular Dystrophy (MD) is a group of inherited muscular diseases that are commonly diagnosed with the help of techniques such as muscle biopsy, clinical presentation, and Muscle Magnetic Resonance Imaging (MRI). Among these techniques, Muscle MRI recommends the diagnosis of muscular dystrophy through identification of the patterns that exist in muscle fatty replacement. But the patterns overlap among various diseases whereas there is a lack of knowledge prevalent with regards to disease-specific patterns. Therefore, artificial intelligence techniques can be used in the diagnosis of muscular dystrophies, which enables us to analyze, learn, and predict for the future. In this scenario,… More >

  • Open Access


    Swarm-Based Extreme Learning Machine Models for Global Optimization

    Mustafa Abdul Salam1,*, Ahmad Taher Azar2, Rana Hussien2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6339-6363, 2022, DOI:10.32604/cmc.2022.020583

    Abstract Extreme Learning Machine (ELM) is popular in batch learning, sequential learning, and progressive learning, due to its speed, easy integration, and generalization ability. While, Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence, high time and space complexity. In ELM, the hidden layer typically necessitates a huge number of nodes. Furthermore, there is no certainty that the arrangement of weights and biases within the hidden layer is optimal. To solve this problem, the traditional ELM has been hybridized with swarm intelligence optimization techniques. This paper displays five proposed hybrid Algorithms “Salp Swarm Algorithm (SSA-ELM), Grasshopper… More >

  • Open Access


    Optimal Deep Dense Convolutional Neural Network Based Classification Model for COVID-19 Disease

    A. Sheryl Oliver1, P. Suresh2, A. Mohanarathinam3, Seifedine Kadry4, Orawit Thinnukool5,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 2031-2047, 2022, DOI:10.32604/cmc.2022.019876

    Abstract Early diagnosis and detection are important tasks in controlling the spread of COVID-19. A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images and X-rays. However, these methods suffer from biased results and inaccurate detection of the disease. So, the current research article developed Oppositional-based Chimp Optimization Algorithm and Deep Dense Convolutional Neural Network (OCOA-DDCNN) for COVID-19 prediction using CT images in IoT environment. The proposed methodology works on the basis of two stages such as pre-processing and prediction. Initially, CT scan images generated from prospective COVID-19 are collected… More >

Displaying 41-50 on page 5 of 56. Per Page