Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access

    ARTICLE

    CNN-Based Voice Emotion Classification Model for Risk Detection

    Hyun Yoo1, Ji-Won Baek2, Kyungyong Chung3,*

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 319-334, 2021, DOI:10.32604/iasc.2021.018115

    Abstract With the convergence and development of the Internet of things (IoT) and artificial intelligence, closed-circuit television, wearable devices, and artificial neural networks have been combined and applied to crime prevention and follow-up measures against crimes. However, these IoT devices have various limitations based on the physical environment and face the fundamental problem of privacy violations. In this study, voice data are collected and emotions are classified based on an acoustic sensor that is free of privacy violations and is not sensitive to changes in external environments, to overcome these limitations. For the classification of emotions in the voice, the data… More >

  • Open Access

    ARTICLE

    An Optimal Big Data Analytics with Concept Drift Detection on High-Dimensional Streaming Data

    Romany F. Mansour1,*, Shaha Al-Otaibi2, Amal Al-Rasheed2, Hanan Aljuaid3, Irina V. Pustokhina4, Denis A. Pustokhin5

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 2843-2858, 2021, DOI:10.32604/cmc.2021.016626

    Abstract Big data streams started becoming ubiquitous in recent years, thanks to rapid generation of massive volumes of data by different applications. It is challenging to apply existing data mining tools and techniques directly in these big data streams. At the same time, streaming data from several applications results in two major problems such as class imbalance and concept drift. The current research paper presents a new Multi-Objective Metaheuristic Optimization-based Big Data Analytics with Concept Drift Detection (MOMBD-CDD) method on High-Dimensional Streaming Data. The presented MOMBD-CDD model has different operational stages such as pre-processing, CDD, and classification. MOMBD-CDD model overcomes class… More >

  • Open Access

    ARTICLE

    An Optimal Classification Model for Rice Plant Disease Detection

    R. Sowmyalakshmi1, T. Jayasankar1,*, V. Ayyem Pillai2, Kamalraj Subramaniyan3, Irina V. Pustokhina4, Denis A. Pustokhin5, K. Shankar6

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1751-1767, 2021, DOI:10.32604/cmc.2021.016825

    Abstract Internet of Things (IoT) paves a new direction in the domain of smart farming and precision agriculture. Smart farming is an upgraded version of agriculture which is aimed at improving the cultivation practices and yield to a certain extent. In smart farming, IoT devices are linked among one another with new technologies to improve the agricultural practices. Smart farming makes use of IoT devices and contributes in effective decision making. Rice is the major food source in most of the countries. So, it becomes inevitable to detect rice plant diseases during early stages with the help of automated tools and… More >

  • Open Access

    ARTICLE

    Deep Trajectory Classification Model for Congestion Detection in Human Crowds

    Emad Felemban1, Sultan Daud Khan2, Atif Naseer3, Faizan Ur Rehman4,*, Saleh Basalamah1

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 705-725, 2021, DOI:10.32604/cmc.2021.015085

    Abstract In high-density gatherings, crowd disasters frequently occur despite all the safety measures. Timely detection of congestion in human crowds using automated analysis of video footage can prevent crowd disasters. Recent work on the prevention of crowd disasters has been based on manual analysis of video footage. Some methods also measure crowd congestion by estimating crowd density. However, crowd density alone cannot provide reliable information about congestion. This paper proposes a deep learning framework for automated crowd congestion detection that leverages pedestrian trajectories. The proposed framework divided the input video into several temporal segments. We then extracted dense trajectories from each… More >

  • Open Access

    ARTICLE

    A Network Traffic Classification Model Based on Metric Learning

    Mo Chen1, Xiaojuan Wang1, *, Mingshu He1, Lei Jin1, Khalid Javeed2, Xiaojun Wang3

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 941-959, 2020, DOI:10.32604/cmc.2020.09802

    Abstract Attacks on websites and network servers are among the most critical threats in network security. Network behavior identification is one of the most effective ways to identify malicious network intrusions. Analyzing abnormal network traffic patterns and traffic classification based on labeled network traffic data are among the most effective approaches for network behavior identification. Traditional methods for network traffic classification utilize algorithms such as Naive Bayes, Decision Tree and XGBoost. However, network traffic classification, which is required for network behavior identification, generally suffers from the problem of low accuracy even with the recently proposed deep learning models. To improve network… More >

  • Open Access

    ARTICLE

    MII: A Novel Text Classification Model Combining Deep Active Learning with BERT

    Anman Zhang1, Bohan Li1, 2, 3, *, Wenhuan Wang1, Shuo Wan1, Weitong Chen4

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1499-1514, 2020, DOI:10.32604/cmc.2020.09962

    Abstract Active learning has been widely utilized to reduce the labeling cost of supervised learning. By selecting specific instances to train the model, the performance of the model was improved within limited steps. However, rare work paid attention to the effectiveness of active learning on it. In this paper, we proposed a deep active learning model with bidirectional encoder representations from transformers (BERT) for text classification. BERT takes advantage of the self-attention mechanism to integrate contextual information, which is beneficial to accelerate the convergence of training. As for the process of active learning, we design an instance selection strategy based on… More >

Displaying 51-60 on page 6 of 56. Per Page