Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (479)
  • Open Access

    ARTICLE

    Path-Based Clustering Algorithm with High Scalability Using the Combined Behavior of Evolutionary Algorithms

    Leila Safari-Monjeghtapeh1, Mansour Esmaeilpour2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 705-721, 2024, DOI:10.32604/csse.2024.044892 - 20 May 2024

    Abstract Path-based clustering algorithms typically generate clusters by optimizing a benchmark function. Most optimization methods in clustering algorithms often offer solutions close to the general optimal value. This study achieves the global optimum value for the criterion function in a shorter time using the minimax distance, Maximum Spanning Tree “MST”, and meta-heuristic algorithms, including Genetic Algorithm “GA” and Particle Swarm Optimization “PSO”. The Fast Path-based Clustering “FPC” algorithm proposed in this paper can find cluster centers correctly in most datasets and quickly perform clustering operations. The FPC does this operation using MST, the minimax distance, and… More >

  • Open Access

    ARTICLE

    Fuzzy C-Means Algorithm Based on Density Canopy and Manifold Learning

    Jili Chen1,2, Hailan Wang2, Xiaolan Xie1,2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 645-663, 2024, DOI:10.32604/csse.2023.037957 - 20 May 2024

    Abstract Fuzzy C-Means (FCM) is an effective and widely used clustering algorithm, but there are still some problems. considering the number of clusters must be determined manually, the local optimal solutions is easily influenced by the random selection of initial cluster centers, and the performance of Euclid distance in complex high-dimensional data is poor. To solve the above problems, the improved FCM clustering algorithm based on density Canopy and Manifold learning (DM-FCM) is proposed. First, a density Canopy algorithm based on improved local density is proposed to automatically deter-mine the number of clusters and initial cluster… More >

  • Open Access

    ARTICLE

    Hyperspectral Image Based Interpretable Feature Clustering Algorithm

    Yaming Kang1,*, Peishun Ye1, Yuxiu Bai1, Shi Qiu2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2151-2168, 2024, DOI:10.32604/cmc.2024.049360 - 15 May 2024

    Abstract Hyperspectral imagery encompasses spectral and spatial dimensions, reflecting the material properties of objects. Its application proves crucial in search and rescue, concealed target identification, and crop growth analysis. Clustering is an important method of hyperspectral analysis. The vast data volume of hyperspectral imagery, coupled with redundant information, poses significant challenges in swiftly and accurately extracting features for subsequent analysis. The current hyperspectral feature clustering methods, which are mostly studied from space or spectrum, do not have strong interpretability, resulting in poor comprehensibility of the algorithm. So, this research introduces a feature clustering algorithm for hyperspectral… More >

  • Open Access

    ARTICLE

    Cluster Detection Method of Endogenous Security Abnormal Attack Behavior in Air Traffic Control Network

    Ruchun Jia1, Jianwei Zhang1,*, Yi Lin1, Yunxiang Han1, Feike Yang2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2523-2546, 2024, DOI:10.32604/cmc.2024.047543 - 15 May 2024

    Abstract In order to enhance the accuracy of Air Traffic Control (ATC) cybersecurity attack detection, in this paper, a new clustering detection method is designed for air traffic control network security attacks. The feature set for ATC cybersecurity attacks is constructed by setting the feature states, adding recursive features, and determining the feature criticality. The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data. An autoencoder is introduced into the AI (artificial intelligence) algorithm to encode and… More >

  • Open Access

    ARTICLE

    Density Clustering Algorithm Based on KD-Tree and Voting Rules

    Hui Du, Zhiyuan Hu*, Depeng Lu, Jingrui Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3239-3259, 2024, DOI:10.32604/cmc.2024.046314 - 15 May 2024

    Abstract Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets with uneven density. Additionally, they incur substantial computational costs when applied to high-dimensional data due to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset and compute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similarity matrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a vote for the point with the highest density among its KNN. By utilizing the vote counts More >

  • Open Access

    ARTICLE

    An Innovative K-Anonymity Privacy-Preserving Algorithm to Improve Data Availability in the Context of Big Data

    Linlin Yuan1,2, Tiantian Zhang1,3, Yuling Chen1,*, Yuxiang Yang1, Huang Li1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1561-1579, 2024, DOI:10.32604/cmc.2023.046907 - 25 April 2024

    Abstract The development of technologies such as big data and blockchain has brought convenience to life, but at the same time, privacy and security issues are becoming more and more prominent. The K-anonymity algorithm is an effective and low computational complexity privacy-preserving algorithm that can safeguard users’ privacy by anonymizing big data. However, the algorithm currently suffers from the problem of focusing only on improving user privacy while ignoring data availability. In addition, ignoring the impact of quasi-identified attributes on sensitive attributes causes the usability of the processed data on statistical analysis to be reduced. Based… More >

  • Open Access

    ARTICLE

    Contrastive Consistency and Attentive Complementarity for Deep Multi-View Subspace Clustering

    Jiao Wang, Bin Wu*, Hongying Zhang

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 143-160, 2024, DOI:10.32604/cmc.2023.046011 - 25 April 2024

    Abstract Deep multi-view subspace clustering (DMVSC) based on self-expression has attracted increasing attention due to its outstanding performance and nonlinear application. However, most existing methods neglect that view-private meaningless information or noise may interfere with the learning of self-expression, which may lead to the degeneration of clustering performance. In this paper, we propose a novel framework of Contrastive Consistency and Attentive Complementarity (CCAC) for DMVsSC. CCAC aligns all the self-expressions of multiple views and fuses them based on their discrimination, so that it can effectively explore consistent and complementary information for achieving precise clustering. Specifically, the More >

  • Open Access

    ARTICLE

    Reliable Data Collection Model and Transmission Framework in Large-Scale Wireless Medical Sensor Networks

    Haosong Gou1, Gaoyi Zhang1, Renê Ripardo Calixto2, Senthil Kumar Jagatheesaperumal3, Victor Hugo C. de Albuquerque2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1077-1102, 2024, DOI:10.32604/cmes.2024.047806 - 16 April 2024

    Abstract Large-scale wireless sensor networks (WSNs) play a critical role in monitoring dangerous scenarios and responding to medical emergencies. However, the inherent instability and error-prone nature of wireless links present significant challenges, necessitating efficient data collection and reliable transmission services. This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs. The primary goal is to enhance the reliability of data collection and transmission services, ensuring a comprehensive and practical approach. Our approach focuses on refining the hop-count-based routing scheme to achieve… More >

  • Open Access

    ARTICLE

    A Web Application Fingerprint Recognition Method Based on Machine Learning

    Yanmei Shi1, Wei Yu2,*, Yanxia Zhao3,*, Yungang Jia4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 887-906, 2024, DOI:10.32604/cmes.2024.046140 - 16 April 2024

    Abstract Web application fingerprint recognition is an effective security technology designed to identify and classify web applications, thereby enhancing the detection of potential threats and attacks. Traditional fingerprint recognition methods, which rely on preannotated feature matching, face inherent limitations due to the ever-evolving nature and diverse landscape of web applications. In response to these challenges, this work proposes an innovative web application fingerprint recognition method founded on clustering techniques. The method involves extensive data collection from the Tranco List, employing adjusted feature selection built upon Wappalyzer and noise reduction through truncated SVD dimensionality reduction. The core… More >

  • Open Access

    ARTICLE

    Deep Learning and Tensor-Based Multiple Clustering Approaches for Cyber-Physical-Social Applications

    Hongjun Zhang1,2, Hao Zhang2, Yu Lei3, Hao Ye1, Peng Li1,*, Desheng Shi1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4109-4128, 2024, DOI:10.32604/cmc.2024.048355 - 26 March 2024

    Abstract The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms… More >

Displaying 31-40 on page 4 of 479. Per Page