Ning Tang1,2, Wang Luo1,2,*, Yiwei Wang1,2, Bao Feng1,2, Shuang Yang1,2, Jiangtao Xu3, Daohua Zhu3, Zhechen Huang3, Wei Liang3
CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4091-4113, 2025, DOI:10.32604/cmc.2025.066241
- 23 September 2025
Abstract With the deep integration of edge computing, 5G and Artificial Intelligence of Things (AIoT) technologies, the large-scale deployment of intelligent terminal devices has given rise to data silos and privacy security challenges in sensing-computing fusion scenarios. Traditional federated learning (FL) algorithms face significant limitations in practical applications due to client drift, model bias, and resource constraints under non-independent and identically distributed (Non-IID) data, as well as the computational overhead and utility loss caused by privacy-preserving techniques. To address these issues, this paper proposes an Efficient and Privacy-enhancing Clustering Federated Learning method (FedEPC). This method introduces… More >