Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (492)
  • Open Access

    REVIEW

    Perspectives of Vertical Axis Wind Turbines in Cluster Configurations

    Ryan Randall1, Chunmei Chen1,*, Mesfin Belayneh Ageze2,3, Muluken Temesgen Tigabu4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2657-2691, 2024, DOI:10.32604/fdmp.2024.058169 - 23 December 2024

    Abstract Vertical Axis Wind Turbines (VAWTs) offer several advantages over horizontal axis wind turbines (HAWTs), including quieter operation, ease of maintenance, and simplified construction. Surprisingly, despite the prevailing belief that HAWTs outperform VAWTs as individual units, VAWTs demonstrate higher power density when arranged in clusters. This phenomenon arises from positive wake interactions downstream of VAWTs, potentially enhancing the overall wind farm performances. In contrast, wake interactions negatively impact HAWT farms, reducing their efficiency. This paper extensively reviews the potential of VAWT clusters to increase energy output and reduce wind energy costs. A precise terminology is introduced More >

  • Open Access

    ARTICLE

    Coordinate Descent K-means Algorithm Based on Split-Merge

    Fuheng Qu1, Yuhang Shi1, Yong Yang1,*, Yating Hu2, Yuyao Liu1

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4875-4893, 2024, DOI:10.32604/cmc.2024.060090 - 19 December 2024

    Abstract The Coordinate Descent Method for K-means (CDKM) is an improved algorithm of K-means. It identifies better locally optimal solutions than the original K-means algorithm. That is, it achieves solutions that yield smaller objective function values than the K-means algorithm. However, CDKM is sensitive to initialization, which makes the K-means objective function values not small enough. Since selecting suitable initial centers is not always possible, this paper proposes a novel algorithm by modifying the process of CDKM. The proposed algorithm first obtains the partition matrix by CDKM and then optimizes the partition matrix by designing the… More >

  • Open Access

    ARTICLE

    A Multi-Objective Clustered Input Oriented Salp Swarm Algorithm in Cloud Computing

    Juliet A. Murali1,*, Brindha T.2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4659-4690, 2024, DOI:10.32604/cmc.2024.058115 - 19 December 2024

    Abstract Infrastructure as a Service (IaaS) in cloud computing enables flexible resource distribution over the Internet, but achieving optimal scheduling remains a challenge. Effective resource allocation in cloud-based environments, particularly within the IaaS model, poses persistent challenges. Existing methods often struggle with slow optimization, imbalanced workload distribution, and inefficient use of available assets. These limitations result in longer processing times, increased operational expenses, and inadequate resource deployment, particularly under fluctuating demands. To overcome these issues, a novel Clustered Input-Oriented Salp Swarm Algorithm (CIOSSA) is introduced. This approach combines two distinct strategies: Task Splitting Agglomerative Clustering (TSAC)… More >

  • Open Access

    PROCEEDINGS

    Damage Detection in CFRP Composite Joints using Acoustic Emission Analysis

    Wenhao Li1,*, Zongyang Liu1,2, Dingcheng Ji1,2, Yiding Liu3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011927

    Abstract This research advances the field by focusing on the damage assessment of adhesively bonded joints using AE, with limited prior studies in this specific area. Through the preparation of CFRP specimens and subsequent tensile loading tests, AE signals were captured and analyzed. The study employed wavelet decomposition for noise reduction and Short-Time Fourier Transform (STFT) for signal analysis, facilitating the identification of damage-related frequencies and amplitudes. Hierarchical clustering was applied to categorize AE signals into distinct damage behaviors, utilizing a divisive approach that avoids local minima and offers unique results at each iteration. The method's… More >

  • Open Access

    ARTICLE

    Photovoltaic Power Generation Power Prediction under Major Extreme Weather Based on VMD-KELM

    Yuxuan Zhao1,2,*, Bo Wang1, Shu Wang1, Wenjun Xu2, Gang Ma2

    Energy Engineering, Vol.121, No.12, pp. 3711-3733, 2024, DOI:10.32604/ee.2024.054032 - 22 November 2024

    Abstract The output of photovoltaic power stations is significantly affected by environmental factors, leading to intermittent and fluctuating power generation. With the increasing frequency of extreme weather events due to global warming, photovoltaic power stations may experience drastic reductions in power generation or even complete shutdowns during such conditions. The integration of these stations on a large scale into the power grid could potentially pose challenges to system stability. To address this issue, in this study, we propose a network architecture based on VMD-KELM for predicting the power output of photovoltaic power plants during severe weather… More >

  • Open Access

    ARTICLE

    DC-FIPD: Fraudulent IP Identification Method Based on Homology Detection

    Yuanyuan Ma1, Ang Chen1, Cunzhi Hou1, Ruixia Jin2, Jinghui Zhang1, Ruixiang Li3,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3301-3323, 2024, DOI:10.32604/cmc.2024.056854 - 18 November 2024

    Abstract Currently, telecom fraud is expanding from the traditional telephone network to the Internet, and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights. However, existing telecom fraud identification methods based on blacklists, reputation, content and behavioral characteristics have good identification performance in the telephone network, but it is difficult to apply to the Internet where IP (Internet Protocol) addresses change dynamically. To address this issue, we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise) clustering (DC-FIPD). First, we… More >

  • Open Access

    ARTICLE

    TLERAD: Transfer Learning for Enhanced Ransomware Attack Detection

    Isha Sood*, Varsha Sharma

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2791-2818, 2024, DOI:10.32604/cmc.2024.055463 - 18 November 2024

    Abstract Ransomware has emerged as a critical cybersecurity threat, characterized by its ability to encrypt user data or lock devices, demanding ransom for their release. Traditional ransomware detection methods face limitations due to their assumption of similar data distributions between training and testing phases, rendering them less effective against evolving ransomware families. This paper introduces TLERAD (Transfer Learning for Enhanced Ransomware Attack Detection), a novel approach that leverages unsupervised transfer learning and co-clustering techniques to bridge the gap between source and target domains, enabling robust detection of both known and unknown ransomware variants. The proposed method More >

  • Open Access

    ARTICLE

    A Novel Filtering-Based Detection Method for Small Targets in Infrared Images

    Sanxia Shi, Yinglei Song*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2911-2934, 2024, DOI:10.32604/cmc.2024.055363 - 18 November 2024

    Abstract Infrared small target detection technology plays a pivotal role in critical military applications, including early warning systems and precision guidance for missiles and other defense mechanisms. Nevertheless, existing traditional methods face several significant challenges, including low background suppression ability, low detection rates, and high false alarm rates when identifying infrared small targets in complex environments. This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach. The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.… More >

  • Open Access

    ARTICLE

    An Enhanced Integrated Method for Healthcare Data Classification with Incompleteness

    Sonia Goel1,#, Meena Tushir1, Jyoti Arora2, Tripti Sharma2, Deepali Gupta3, Ali Nauman4,#, Ghulam Muhammad5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3125-3145, 2024, DOI:10.32604/cmc.2024.054476 - 18 November 2024

    Abstract In numerous real-world healthcare applications, handling incomplete medical data poses significant challenges for missing value imputation and subsequent clustering or classification tasks. Traditional approaches often rely on statistical methods for imputation, which may yield suboptimal results and be computationally intensive. This paper aims to integrate imputation and clustering techniques to enhance the classification of incomplete medical data with improved accuracy. Conventional classification methods are ill-suited for incomplete medical data. To enhance efficiency without compromising accuracy, this paper introduces a novel approach that combines imputation and clustering for the classification of incomplete data. Initially, the linear More >

  • Open Access

    ARTICLE

    Three-Level Optimal Scheduling and Power Allocation Strategy for Power System Containing Wind-Storage Combined Unit

    Jingjing Bai1, Yunpeng Cheng1, Shenyun Yao2,*, Fan Wu1, Cheng Chen1

    Energy Engineering, Vol.121, No.11, pp. 3381-3400, 2024, DOI:10.32604/ee.2024.053683 - 21 October 2024

    Abstract To mitigate the impact of wind power volatility on power system scheduling, this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy. And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit. The strategy takes smoothing power output as the main objectives. The first level is the wind-storage joint scheduling, and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster (WPC), respectively, according to the scheduling power of WPC and… More >

Displaying 11-20 on page 2 of 492. Per Page