Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (498)
  • Open Access

    ARTICLE

    Global Levy Flight of Cuckoo Search with Particle Swarm Optimization for Effective Cluster Head Selection in Wireless Sensor Network

    Vijayalakshmi. K1,*, Anandan. P2

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 303-311, 2020, DOI:10.31209/2020.100000165

    Abstract The advent of sensors that are light in weight, small-sized, low power and are enabled by wireless network has led to growth of Wireless Sensor Networks (WSNs) in multiple areas of applications. The key problems faced in WSNs are decreased network lifetime and time delay in transmission of data. Several key issues in the WSN design can be addressed using the Multi-Objective Optimization (MOO) Algorithms. The selection of the Cluster Head is a NP Hard optimization problem in nature. The CH selection is also challenging as the sensor nodes are organized in clusters. Through partitioning… More >

  • Open Access

    ARTICLE

    Identification and Segmentation of Impurities Accumulated in a Cold-Trap Device by Using Radiographic Images

    Thamotharan B1,*, Venkatraman B2, Chandrasekaran S3

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 335-340, 2020, DOI:10.31209/2019.100000156

    Abstract Accumulation of impurities within cold trap device results in degradation of efficient performance in a nuclear reactor systems. The impurities have to be identified and the device has to be replaced periodically based on the accumulation level. Though there are a few techniques available to identify these impurities from the cold trap device, there are certain limitations in these techniques. In order to overcome these constraints, a new harmless and easy approach for identifying and separating the impurities using the radiographic images of cold traps is proposed in this paper. It includes a new segmentation More >

  • Open Access

    ARTICLE

    An Improved Crow Search Based Intuitionistic Fuzzy Clustering Algorithm for Healthcare Applications

    Parvathavarthini S1,*, Karthikeyani Visalakshi N2, Shanthi S3, Madhan Mohan J4

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 253-260, 2020, DOI:10.31209/2019.100000155

    Abstract Intuitionistic fuzzy clustering allows the uncertainties in data to be represented more precisely. Medical data usually possess a high degree of uncertainty and serve as the right candidate to be represented as Intuitionistic fuzzy sets. However, the selection of initial centroids plays a crucial role in determining the resulting cluster structure. Crow search algorithm is hybridized with Intuitionistic fuzzy C-means to attain better results than the existing hybrid algorithms. Still, the performance of the algorithm needs improvement with respect to the objective function and cluster indices especially with internal indices. In order to address these More >

  • Open Access

    ARTICLE

    Personalized Nutrition Recommendation for Diabetic Patients Using Optimization Techniques

    Bhavithra Janakiraman1,*, Saradha Arumugam2

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 269-280, 2020, DOI:10.31209/2019.100000150

    Abstract Personalization in recommendation system has been emerging as the most predominant area in service computing. Collaborative filtering and content based approaches are two major techniques applied for recommendation. However, to improve the accuracy and enhance user satisfaction, optimization techniques such as Ant Colony and Particle Swarm Optimization were analyzed in this paper. For theoretical analysis, this paper investigates web page recommender system. For experimentation, Diabetic patient’s health records were investigated and recommendation algorithms are applied to suggest appropriate nutrition for improving their health. Experiment result shows that Particle Swarm Optimization outperforms other traditional methods with More >

  • Open Access

    ARTICLE

    Color Image Segmentation Using Soft Rough Fuzzy-C-Means and Local Binary Pattern

    R.V.V. Krishna1,*, S. Srinivas Kumar2

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 281-290, 2020, DOI:10.31209/2019.100000121

    Abstract In this paper, a color image segmentation algorithm is proposed by extracting both texture and color features and applying them to the one -against-all multi class support vector machine (MSVM) classifier for segmentation. Local Binary Pattern is used for extracting the textural features and L*a*b color model is used for obtaining the color features. The MSVM is trained using the samples obtained from a novel soft rough fuzzy c-means (SRFCM) clustering. The fuzzy set based membership functions capably handle the problem of overlapping clusters. The lower and upper approximation concepts of rough sets deal well More >

  • Open Access

    ARTICLE

    Quantum Hierarchical Agglomerative Clustering Based on One Dimension Discrete Quantum Walk with Single-Point Phase Defects

    Gongde Guo1, Kai Yu1, Hui Wang2, Song Lin1, *, Yongzhen Xu1, Xiaofeng Chen3

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1397-1409, 2020, DOI:10.32604/cmc.2020.011399 - 20 August 2020

    Abstract As an important branch of machine learning, clustering analysis is widely used in some fields, e.g., image pattern recognition, social network analysis, information security, and so on. In this paper, we consider the designing of clustering algorithm in quantum scenario, and propose a quantum hierarchical agglomerative clustering algorithm, which is based on one dimension discrete quantum walk with single-point phase defects. In the proposed algorithm, two nonclassical characters of this kind of quantum walk, localization and ballistic effects, are exploited. At first, each data point is viewed as a particle and performed this kind of… More >

  • Open Access

    ARTICLE

    A Direct Data-Cluster Analysis Method Based on Neutrosophic Set Implication

    Sudan Jha1, Gyanendra Prasad Joshi2, Lewis Nkenyereya3, Dae Wan Kim4, *, Florentin Smarandache5

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1203-1220, 2020, DOI:10.32604/cmc.2020.011618 - 20 August 2020

    Abstract Raw data are classified using clustering techniques in a reasonable manner to create disjoint clusters. A lot of clustering algorithms based on specific parameters have been proposed to access a high volume of datasets. This paper focuses on cluster analysis based on neutrosophic set implication, i.e., a k-means algorithm with a threshold-based clustering technique. This algorithm addresses the shortcomings of the k-means clustering algorithm by overcoming the limitations of the threshold-based clustering algorithm. To evaluate the validity of the proposed method, several validity measures and validity indices are applied to the Iris dataset (from the University More >

  • Open Access

    ARTICLE

    Analysis of Twitter Data Using Evolutionary Clustering during the COVID-19 Pandemic

    Ibrahim Arpaci1, Shadi Alshehabi2, Mostafa Al-Emran3, *, Mahmoud Khasawneh4, Ibrahim Mahariq4, Thabet Abdeljawad5, 6, 7, Aboul Ella Hassanien8, 9

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 193-204, 2020, DOI:10.32604/cmc.2020.011489 - 23 July 2020

    Abstract People started posting textual tweets on Twitter as soon as the novel coronavirus (COVID-19) emerged. Analyzing these tweets can assist institutions in better decision-making and prioritizing their tasks. Therefore, this study aimed to analyze 43 million tweets collected between March 22 and March 30, 2020 and describe the trend of public attention given to the topics related to the COVID-19 epidemic using evolutionary clustering analysis. The results indicated that unigram terms were trended more frequently than bigram and trigram terms. A large number of tweets about the COVID-19 were disseminated and received widespread public attention… More >

  • Open Access

    ARTICLE

    A Nonuniform Clustering Routing Algorithm Based on an Improved K-Means Algorithm

    Xinliang Tang1, Man Zhang1, Pingping Yu1, Wei Liu2, Ning Cao3, *, Yunfeng Xu4

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1725-1739, 2020, DOI:10.32604/cmc.2020.010272 - 30 June 2020

    Abstract In a large-scale wireless sensor network (WSN), densely distributed sensor nodes process a large amount of data. The aggregation of data in a network can consume a great amount of energy. To balance and reduce the energy consumption of nodes in a WSN and extend the network life, this paper proposes a nonuniform clustering routing algorithm based on the improved K-means algorithm. The algorithm uses a clustering method to form and optimize clusters, and it selects appropriate cluster heads to balance network energy consumption and extend the life cycle of the WSN. To ensure that More >

  • Open Access

    ARTICLE

    Air Quality Prediction Based on Kohonen Clustering and ReliefF Feature Selection

    Bolun Chen1, 2, Guochang Zhu1, *, Min Ji1, Yongtao Yu1, Jianyang Zhao1, Wei Liu3

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 1039-1049, 2020, DOI:10.32604/cmc.2020.010583 - 10 June 2020

    Abstract Air quality prediction is an important part of environmental governance. The accuracy of the air quality prediction also affects the planning of people’s outdoor activities. How to mine effective information from historical data of air pollution and reduce unimportant factors to predict the law of pollution change is of great significance for pollution prevention, pollution control and pollution early warning. In this paper, we take into account that there are different trends in air pollutants and that different climatic factors have different effects on air pollutants. Firstly, the data of air pollutants in different cities… More >

Displaying 431-440 on page 44 of 498. Per Page