Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    A Shadowed Rough-fuzzy Clustering Algorithm Based on Mahalanobis Distance for Intrusion Detection

    Lina Wang1,2,*, Jie Wang3, Yongjun Ren4, Zimeng Xing1, Tao Li1, Jinyue Xia5

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 31-47, 2021, DOI:10.32604/iasc.2021.018577 - 26 July 2021

    Abstract Intrusion detection has been widely used in many application domains; thus, it has caught significant attention in academic fields these years. Assembled with more and more sub-systems, the network is more vulnerable to multiple attacks aiming at the network security. Compared with the other issues such as complex environment and resources-constrained devices, network security has been the biggest challenge for Internet construction. To deal with this problem, a fundamental measure for safeguarding network security is to select an intrusion detection algorithm. As is known, it is less effective to determine the abnormal behavior as an… More >

  • Open Access

    ARTICLE

    Trade-Off between Efficiency and Effectiveness: A Late Fusion Multi-View Clustering Algorithm

    Yunping Zhao1, Weixuan Liang1, Jianzhuang Lu1,*, Xiaowen Chen1, Nijiwa Kong2

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2709-2722, 2021, DOI:10.32604/cmc.2021.013389 - 28 December 2020

    Abstract Late fusion multi-view clustering (LFMVC) algorithms aim to integrate the base partition of each single view into a consensus partition. Base partitions can be obtained by performing kernel k-means clustering on all views. This type of method is not only computationally efficient, but also more accurate than multiple kernel k-means, and is thus widely used in the multi-view clustering context. LFMVC improves computational efficiency to the extent that the computational complexity of each iteration is reduced from O(n3) to O(n) (where n is the number of samples). However, LFMVC also limits the search space of the… More >

  • Open Access

    ARTICLE

    Clustering Algorithms: Taxonomy, Comparison, and Empirical Analysis in 2D Datasets

    Samih M. Mostafa1,2,*

    Journal on Artificial Intelligence, Vol.2, No.4, pp. 189-215, 2020, DOI:10.32604/jai.2020.014944 - 31 December 2020

    Abstract Because of the abundance of clustering methods, comparing between methods and determining which method is proper for a given dataset is crucial. Especially, the availability of huge experimental datasets and transactional and the emerging requirements for data mining and the like needs badly for clustering algorithms that can be applied in various domains. This paper presents essential notions of clustering and offers an overview of the significant features of the most common representative clustering algorithms of clustering categories presented in a comparative way. More specifically the study is based on the numerical type of the More >

  • Open Access

    ARTICLE

    A Clustering Method Based on Brain Storm Optimization Algorithm

    Tianyu Wang, Yu Xue, Yan Zhao, Yuxiang Wang*, Yan Zhang, Yuxiang He

    Journal of Information Hiding and Privacy Protection, Vol.2, No.3, pp. 135-142, 2020, DOI:10.32604/jihpp.2020.010362 - 18 December 2020

    Abstract In the field of data mining and machine learning, clustering is a typical issue which has been widely studied by many researchers, and lots of effective algorithms have been proposed, including K-means, fuzzy c-means (FCM) and DBSCAN. However, the traditional clustering methods are easily trapped into local optimum. Thus, many evolutionary-based clustering methods have been investigated. Considering the effectiveness of brain storm optimization (BSO) in increasing the diversity while the diversity optimization is performed, in this paper, we propose a new clustering model based on BSO to use the global ability of BSO. In our… More >

  • Open Access

    ARTICLE

    Weighted Particle Swarm Clustering Algorithm for Self-Organizing Maps

    Guorong Cui, Hao Li, Yachuan Zhang, Rongjing Bu, Yan Kang*, Jinyuan Li, Yang Hu

    Journal of Quantum Computing, Vol.2, No.2, pp. 85-95, 2020, DOI:10.32604/jqc.2020.09717 - 19 October 2020

    Abstract The traditional K-means clustering algorithm is difficult to determine the cluster number, which is sensitive to the initialization of the clustering center and easy to fall into local optimum. This paper proposes a clustering algorithm based on self-organizing mapping network and weight particle swarm optimization SOM&WPSO (Self-Organization Map and Weight Particle Swarm Optimization). Firstly, the algorithm takes the competitive learning mechanism of a self-organizing mapping network to divide the data samples into coarse clusters and obtain the clustering center. Then, the obtained clustering center is used as the initialization parameter of the weight particle swarm… More >

  • Open Access

    ARTICLE

    Hybridization of Fuzzy and Hard Semi-Supervised Clustering Algorithms Tuned with Ant Lion Optimizer Applied to Higgs Boson Search

    Soukaina Mjahed1,*, Khadija Bouzaachane1, Ahmad Taher Azar2,3, Salah El Hadaj1, Said Raghay1

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 459-494, 2020, DOI:10.32604/cmes.2020.010791 - 12 October 2020

    Abstract This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the “Higgs machine learning challenge 2014” data set. This unsupervised detection goes in this paper analysis through 4 steps: (1) selection of the most informative features from the considered data; (2) definition of the number of clusters based on the elbow criterion. The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters; (3) proposition of a new approach for hybridization of… More >

  • Open Access

    ARTICLE

    The Application of Sparse Reconstruction Algorithm for Improving Background Dictionary in Visual Saliency Detection

    Lei Feng1,2, Haibin Li1,*, Yakun Gao1, Yakun Zhang1

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 831-839, 2020, DOI:10.32604/iasc.2020.010117

    Abstract In the paper, we apply the sparse reconstruction algorithm of improved background dictionary to saliency detection. Firstly, after super-pixel segmentation, two bottom features are extracted: the color information of LAB and the texture features of the image by Gabor filter. Secondly, the convex hull theory is used to remove object region in boundary region, and K-means clustering algorithm is used to continue to simplify the background dictionary. Finally, the saliency map is obtained by calculating the reconstruction error. Compared with the mainstream algorithms, the accuracy and efficiency of this algorithm are better than those of More >

  • Open Access

    ARTICLE

    An Improved Crow Search Based Intuitionistic Fuzzy Clustering Algorithm for Healthcare Applications

    Parvathavarthini S1,*, Karthikeyani Visalakshi N2, Shanthi S3, Madhan Mohan J4

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 253-260, 2020, DOI:10.31209/2019.100000155

    Abstract Intuitionistic fuzzy clustering allows the uncertainties in data to be represented more precisely. Medical data usually possess a high degree of uncertainty and serve as the right candidate to be represented as Intuitionistic fuzzy sets. However, the selection of initial centroids plays a crucial role in determining the resulting cluster structure. Crow search algorithm is hybridized with Intuitionistic fuzzy C-means to attain better results than the existing hybrid algorithms. Still, the performance of the algorithm needs improvement with respect to the objective function and cluster indices especially with internal indices. In order to address these More >

  • Open Access

    ARTICLE

    Analysis of Semi-Supervised Text Clustering Algorithm on Marine Data

    Yu Jiang1, 2, Dengwen Yu1, Mingzhao Zhao1, 2, Hongtao Bai1, 2, Chong Wang1, 2, 3, Lili He1, 2, *

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 207-216, 2020, DOI:10.32604/cmc.2020.09861 - 20 May 2020

    Abstract Semi-supervised clustering improves learning performance as long as it uses a small number of labeled samples to assist un-tagged samples for learning. This paper implements and compares unsupervised and semi-supervised clustering analysis of BOAArgo ocean text data. Unsupervised K-Means and Affinity Propagation (AP) are two classical clustering algorithms. The Election-AP algorithm is proposed to handle the final cluster number in AP clustering as it has proved to be difficult to control in a suitable range. Semi-supervised samples thermocline data in the BOA-Argo dataset according to the thermocline standard definition, and use this data for semi-supervised… More >

  • Open Access

    ARTICLE

    Hybrid Clustering Algorithms with GRASP to Construct an Initial Solution for the MVPPDP

    Abeer I. Alhujaylan1, 2, *, Manar I. Hosny1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1025-1051, 2020, DOI:10.32604/cmc.2020.08742

    Abstract Mobile commerce (m-commerce) contributes to increasing the popularity of electronic commerce (e-commerce), allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time. As demand for e-commerce increases tremendously, the pressure on delivery companies increases to organise their transportation plans to achieve profits and customer satisfaction. One important planning problem in this domain is the multi-vehicle profitable pickup and delivery problem (MVPPDP), where a selected set of pickup and delivery customers need to be served within certain allowed trip time. In this paper, we proposed hybrid clustering algorithms More >

Displaying 31-40 on page 4 of 42. Per Page