Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    An Innovative Semi-Supervised Fuzzy Clustering Technique Using Cluster Boundaries

    Duong Tien Dung1,2,3, Ha Hai Nam4, Nguyen Long Giang3, Luong Thi Hong Lan5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5341-5357, 2025, DOI:10.32604/cmc.2025.068299 - 23 October 2025

    Abstract Active semi-supervised fuzzy clustering integrates fuzzy clustering techniques with limited labeled data, guided by active learning, to enhance classification accuracy, particularly in complex and ambiguous datasets. Although several active semi-supervised fuzzy clustering methods have been developed previously, they typically face significant limitations, including high computational complexity, sensitivity to initial cluster centroids, and difficulties in accurately managing boundary clusters where data points often overlap among multiple clusters. This study introduces a novel Active Semi-Supervised Fuzzy Clustering algorithm specifically designed to identify, analyze, and correct misclassified boundary elements. By strategically utilizing labeled data through active learning, our More >

  • Open Access

    ARTICLE

    An Efficient Clustering Algorithm for Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks

    Peng Zhou1,2, Wei Chen1, Bingyu Cao1,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5337-5360, 2025, DOI:10.32604/cmc.2025.065561 - 30 July 2025

    Abstract Wireless Sensor Networks (WSNs), as a crucial component of the Internet of Things (IoT), are widely used in environmental monitoring, industrial control, and security surveillance. However, WSNs still face challenges such as inaccurate node clustering, low energy efficiency, and shortened network lifespan in practical deployments, which significantly limit their large-scale application. To address these issues, this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm (AC-ACO), aiming to optimize the energy utilization and system lifespan of WSNs. AC-ACO combines the path-planning capability of Ant Colony Optimization (ACO) with the dynamic characteristics of chaotic mapping and… More >

  • Open Access

    ARTICLE

    Adaptive Multi-Objective Energy Management Strategy Considering the Differentiated Demands of Distribution Networks with a High Proportion of New-Generation Sources and Loads

    Huang Tan1, Haibo Yu1, Tianyang Chen1, Hanjun Deng2, Yetong Hu3,*

    Energy Engineering, Vol.122, No.5, pp. 1949-1973, 2025, DOI:10.32604/ee.2025.062574 - 25 April 2025

    Abstract With the increasing integration of emerging source-load types such as distributed photovoltaics, electric vehicles, and energy storage into distribution networks, the operational characteristics of these networks have evolved from traditional single-load centers to complex multi-source, multi-load systems. This transition not only increases the difficulty of effectively classifying distribution networks due to their heightened complexity but also renders traditional energy management approaches—primarily focused on economic objectives—insufficient to meet the growing demands for flexible scheduling and dynamic response. To address these challenges, this paper proposes an adaptive multi-objective energy management strategy that accounts for the distinct operational… More >

  • Open Access

    REVIEW

    Navigating the Complexities of Controller Placement in SD-WANs: A Multi-Objective Perspective on Current Trends and Future Challenges

    Abdulrahman M. Abdulghani1,*, Azizol Abdullah1, A. R. Rahiman1, Nor Asilah Wati Abdul Hamid1,2, Bilal Omar Akram3,4, Hafsa Raissouli1

    Computer Systems Science and Engineering, Vol.49, pp. 123-157, 2025, DOI:10.32604/csse.2024.058314 - 03 January 2025

    Abstract This review article provides a comprehensive analysis of the latest advancements and persistent challenges in Software-Defined Wide Area Networks (SD-WANs), with a particular emphasis on the multi-objective Controller Placement Problem (CPP). As SD-WAN technology continues to gain prominence for its capacity to offer flexible and efficient network management, the task of 36optimally placing controllers—responsible for orchestrating and managing network traffic—remains a critical yet complex challenge. This review delves into recent innovations in multi-objective controller placement strategies, including clustering techniques, heuristic-based approaches, and the integration of machine learning and deep learning models. Each methodology is critically More >

  • Open Access

    ARTICLE

    Information Centric Networking Based Cooperative Caching Framework for 5G Communication Systems

    R. Mahaveerakannan1, Thanarajan Tamilvizhi2,*, Sonia Jenifer Rayen3, Osamah Ibrahim Khalaf4, Habib Hamam5,6,7,8

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3945-3966, 2024, DOI:10.32604/cmc.2024.051611 - 12 September 2024

    Abstract The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content. In light of the data-centric aspect of contemporary communication, the information-centric network (ICN) paradigm offers hope for a solution by emphasizing content retrieval by name instead of location. If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things (IoT) devices, then effective caching solutions will be required to maximize network throughput and minimize the use of resources. Hence, an ICN-based Cooperative Caching (ICN-CoC) technique has been used to select… More >

  • Open Access

    ARTICLE

    A Shared Natural Neighbors Based-Hierarchical Clustering Algorithm for Discovering Arbitrary-Shaped Clusters

    Zhongshang Chen, Ji Feng*, Fapeng Cai, Degang Yang

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2031-2048, 2024, DOI:10.32604/cmc.2024.052114 - 15 August 2024

    Abstract In clustering algorithms, the selection of neighbors significantly affects the quality of the final clustering results. While various neighbor relationships exist, such as K-nearest neighbors, natural neighbors, and shared neighbors, most neighbor relationships can only handle single structural relationships, and the identification accuracy is low for datasets with multiple structures. In life, people’s first instinct for complex things is to divide them into multiple parts to complete. Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures. Taking inspiration from this, we propose a novel neighbor method: Shared Natural Neighbors (SNaN). More >

  • Open Access

    ARTICLE

    Exploring Motor Imagery EEG: Enhanced EEG Microstate Analysis with GMD-Driven Density Canopy Method

    Xin Xiong1, Jing Zhang1, Sanli Yi1, Chunwu Wang2, Ruixiang Liu3, Jianfeng He1,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4659-4681, 2024, DOI:10.32604/cmc.2024.050528 - 20 June 2024

    Abstract The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity. Traditional methods such as Atomic Agglomerative Hierarchical Clustering (AAHC), K-means clustering, Principal Component Analysis (PCA), and Independent Component Analysis (ICA) are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction. Tackling these limitations, this study introduces a Global Map Dissimilarity (GMD)-driven density canopy K-means clustering algorithm. This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for… More >

  • Open Access

    ARTICLE

    An Intrusion Detection Method Based on a Universal Gravitation Clustering Algorithm

    Jian Yu1,2,*, Gaofeng Yu3, Xiangmei Xiao1,2, Zhixing Lin1,2

    Journal of Cyber Security, Vol.6, pp. 41-68, 2024, DOI:10.32604/jcs.2024.049658 - 04 June 2024

    Abstract With the rapid advancement of the Internet, network attack methods are constantly evolving and adapting. To better identify the network attack behavior, a universal gravitation clustering algorithm was proposed by analyzing the dissimilarities and similarities of the clustering algorithms. First, the algorithm designated the cluster set as vacant, with the introduction of a new object. Subsequently, a new cluster based on the given object was constructed. The dissimilarities between it and each existing cluster were calculated using a defined difference measure. The minimum dissimilarity was selected. Through comparing the proposed algorithm with the traditional Back More >

  • Open Access

    ARTICLE

    Path-Based Clustering Algorithm with High Scalability Using the Combined Behavior of Evolutionary Algorithms

    Leila Safari-Monjeghtapeh1, Mansour Esmaeilpour2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 705-721, 2024, DOI:10.32604/csse.2024.044892 - 20 May 2024

    Abstract Path-based clustering algorithms typically generate clusters by optimizing a benchmark function. Most optimization methods in clustering algorithms often offer solutions close to the general optimal value. This study achieves the global optimum value for the criterion function in a shorter time using the minimax distance, Maximum Spanning Tree “MST”, and meta-heuristic algorithms, including Genetic Algorithm “GA” and Particle Swarm Optimization “PSO”. The Fast Path-based Clustering “FPC” algorithm proposed in this paper can find cluster centers correctly in most datasets and quickly perform clustering operations. The FPC does this operation using MST, the minimax distance, and… More >

  • Open Access

    ARTICLE

    Hyperspectral Image Based Interpretable Feature Clustering Algorithm

    Yaming Kang1,*, Peishun Ye1, Yuxiu Bai1, Shi Qiu2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2151-2168, 2024, DOI:10.32604/cmc.2024.049360 - 15 May 2024

    Abstract Hyperspectral imagery encompasses spectral and spatial dimensions, reflecting the material properties of objects. Its application proves crucial in search and rescue, concealed target identification, and crop growth analysis. Clustering is an important method of hyperspectral analysis. The vast data volume of hyperspectral imagery, coupled with redundant information, poses significant challenges in swiftly and accurately extracting features for subsequent analysis. The current hyperspectral feature clustering methods, which are mostly studied from space or spectrum, do not have strong interpretability, resulting in poor comprehensibility of the algorithm. So, this research introduces a feature clustering algorithm for hyperspectral… More >

Displaying 1-10 on page 1 of 42. Per Page