Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    Simulation of delamination by means of cohesive elements using an explicit finite element code

    E.V. González1, P. Maimí1, A. Turon1, P.P. Camanho2, J. Renart1

    CMC-Computers, Materials & Continua, Vol.9, No.1, pp. 51-92, 2009, DOI:10.3970/cmc.2009.009.051

    Abstract This paper presents the formulation of a tri-dimensional cohesive element implemented in a user-written material subroutine for explicit finite element analysis. The cohesive element simulates the onset and propagation of the delamination in advanced composite materials. The delamination model is formulated by using a rigorous thermodynamic framework which takes into account the changes of mixed-mode loading conditions. The model is validated by comparing the finite element predictions with experimental data obtained in interlaminar fracture tests under quasi-static loading conditions. More >

Displaying 1-10 on page 1 of 1. Per Page