Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (67)
  • Open Access

    ARTICLE

    Optimal Control and Spectral Collocation Method for Solving Smoking Models

    Amr M. S. Mahdy1,*, Mohamed S. Mohamed1, Ahoud Y. Al Amiri2, Khaled A. Gepreel1

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 899-915, 2022, DOI:10.32604/iasc.2022.017801

    Abstract In this manuscript, we solve the ordinary model of nonlinear smoking mathematically by using the second kind of shifted Chebyshev polynomials. The stability of the equilibrium point is calculated. The schematic of the model illustrates our proposition. We discuss the optimal control of this model, and formularize the optimal control smoking work through the necessary optimality cases. A numerical technique for the simulation of the control problem is adopted. Moreover, a numerical method is presented, and its stability analysis discussed. Numerical simulation then demonstrates our idea. Optimal control for the model is further discussed by clarifying the optimal control through… More >

  • Open Access

    ARTICLE

    A Pseudo-Spectral Scheme for Systems of Two-Point Boundary Value Problems with Left and Right Sided Fractional Derivatives and Related Integral Equations

    I. G. Ameen1, N. A. Elkot2, M. A. Zaky3,*, A. S. Hendy4,5, E. H. Doha2

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 21-41, 2021, DOI:10.32604/cmes.2021.015310

    Abstract We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left- and right-sided fractional derivatives. The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations. Then, a Legendre-based spectral collocation method is developed for solving the transformed system. Therefore, we can make good use of the advantages of the Gauss quadrature rule. We present the construction and analysis of the collocation method. These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations. Two numerical examples… More >

  • Open Access

    ARTICLE

    Spectral Solutions of Linear and Nonlinear BVPs Using Certain Jacobi Polynomials Generalizing Third- and Fourth-Kinds of Chebyshev Polynomials

    W. M. Abd-Elhameed1,2,*, Asmaa M. Alkenedri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 955-989, 2021, DOI:10.32604/cmes.2021.013603

    Abstract This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and nonlinear even-order two-point boundary value problems. For this purpose, we establish new explicit formulas for the high-order derivatives of certain two classes of Jacobi polynomials in terms of their corresponding Jacobi polynomials. These two classes generalize the two celebrated non-symmetric classes of polynomials, namely, Chebyshev polynomials of third- and fourth-kinds. The idea of the derivation of such formulas is essentially based on making use of the power series representations and inversion formulas of these classes of polynomials. The derived formulas serve in converting the even-order… More >

  • Open Access

    ARTICLE

    A Comparative Numerical Study of Parabolic Partial Integro-Differential Equation Arising from Convection-Diffusion

    Kamil Khan1, Arshed Ali1,*, Fazal-i-Haq2, Iltaf Hussain3, Nudrat Amir4

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 673-692, 2021, DOI:10.32604/cmes.2021.012730

    Abstract This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation (PIDE) with a weakly singular kernel. Cubic trigonometric B-spline (CTBS) functions are used for interpolation in both methods. The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations. The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values. An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method… More >

  • Open Access

    ARTICLE

    A Meshless Collocation Method with Barycentric Lagrange Interpolation for Solving the Helmholtz Equation

    Miaomiao Yang, Wentao Ma, Yongbin Ge*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 25-54, 2021, DOI:10.32604/cmes.2021.012575

    Abstract In this paper, Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation. First of all, the interpolation basis function is applied to treat the spatial variables and their partial derivatives, and the collocation method for solving the second order differential equations is established. Secondly, the differential equations on a given test node. Finally, based on three kinds of test nodes, numerical experiments show that the present scheme can not only calculate the high wave numbers problems, but also calculate the variable wave numbers problems. In addition, the algorithm has… More >

  • Open Access

    ARTICLE

    A 2-D Hypersingular Time-Domain BEM for Dynamic Crack Analysis in Generally Anisotropic Solids

    S. Beyer1, Ch. Zhang2, S. Hirose3, J. Sladek, V. Sladek4

    Structural Durability & Health Monitoring, Vol.3, No.3, pp. 177-190, 2007, DOI:10.3970/sdhm.2007.003.177

    Abstract This paper presents a hypersingular time-domain boundary element method (BEM) for transient dynamic crack analysis in two-dimensional (2-D), homogeneous, anisotropic and linear elastic solids. A finite crack in an infinite or a finite solid subjected to impact loading conditions is investigated. A combination of the classical displacement boundary integral equations (BIEs) on the external boundary and the hypersingular traction BIEs on the crack-faces is applied. The present BEM uses the time-domain dynamic fundamental solutions for anisotropic solids derived by Wang and Achenbach (1994). An explicit time-stepping scheme based on collocation method is developed. Numerical examples for computing the dynamic stress… More >

  • Open Access

    ARTICLE

    Numerical Solution of Non-Isothermal Fluid Flows Using Local Radial Basis Functions (LRBF) Interpolation and a Velocity-Correction Method

    G. C. Bourantas1, E. D. Skouras2,3, V. C. Loukopoulos4, G. C. Nikiforidis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.2, pp. 187-212, 2010, DOI:10.3970/cmes.2010.064.187

    Abstract Meshfree point collocation method (MPCM) is developed, solving the velocity-vorticity formulation of Navier-Stokes equations, for two-dimensional, steady state incompressible viscous flow problems in the presence of heat transfer. Particular emphasis is placed on the application of the velocity-correction method, ensuring the continuity equation. The Gaussian Radial Basis Functions (GRBF) interpolation is employed to construct the shape functions in conjunction with the framework of the point collocation method. The cases of forced, natural and mixed convection in a 2D rectangular enclosure are examined. The accuracy and the stability of the proposed scheme are demonstrated through three representative, well known and established… More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin and RBFs Collocation Methods for Solving 2D Fractional Klein-Kramers Dynamics Equation on Irregular Domains

    M. Dehghan1, M. Abbaszadeh2, A. Mohebbi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.6, pp. 481-516, 2015, DOI:10.3970/cmes.2015.107.481

    Abstract In the current paper the two-dimensional time fractional Klein-Kramers equation which describes the subdiffusion in the presence of an external force field in phase space has been considered. The numerical solution of fractional Klein-Kramers equation is investigated. The proposed method is based on using finite difference scheme in time variable for obtaining a semi-discrete scheme. Also, to achieve a full discretization scheme, the Kansa's approach and meshless local Petrov-Galerkin technique are used to approximate the spatial derivatives. The meshless method has already proved successful in solving classic and fractional differential equations as well as for several other engineering and physical… More >

  • Open Access

    ABSTRACT

    A moving modified Trefftz method for inverse Laplace problems in two dimensional multiply-connected domain

    C.-L. Kuo, C.-S. Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.11, No.3, pp. 85-86, 2009, DOI:10.3970/icces.2009.011.085

    Abstract In this paper, the inverse problems in a multiply connected domain governed by the Laplace equation have been investigated numerically by the developed moving modified Trefftz method. When solving the direct Laplace problem with the conventional Trefftz method, one may treat the ill-posed linear algebraic equations because the solution is obtained by expanding the diverging series; while when the inverse Laplace problem is encountered, it is more difficult to treat the more seriously ill-posed behaviors because the incomplete boundary data, and its solution, if exists, does not depend on the given boundary data continuously. Even many researchers have proposed lots… More >

  • Open Access

    ABSTRACT

    Meshless Unsymmetric Collocation Method

    Leevan Ling1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.4, pp. 133-138, 2008, DOI:10.3970/icces.2008.008.133

    Abstract The history of meshless collocation methods featured plenty of nicely calculated practical solutions, but a solid mathematical basis was long missing for the most popular asymmetric technique introduced by E. Kansa. Thus the impact of this work will be to supply a lasting mathematical foundation which will also improve our general understanding of such technique. Our previous research gave a convergent algorithm. More >

Displaying 11-20 on page 2 of 67. Per Page