Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    ARTICLE

    Optimal Control and Spectral Collocation Method for Solving Smoking Models

    Amr M. S. Mahdy1,*, Mohamed S. Mohamed1, Ahoud Y. Al Amiri2, Khaled A. Gepreel1

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 899-915, 2022, DOI:10.32604/iasc.2022.017801 - 22 September 2021

    Abstract In this manuscript, we solve the ordinary model of nonlinear smoking mathematically by using the second kind of shifted Chebyshev polynomials. The stability of the equilibrium point is calculated. The schematic of the model illustrates our proposition. We discuss the optimal control of this model, and formularize the optimal control smoking work through the necessary optimality cases. A numerical technique for the simulation of the control problem is adopted. Moreover, a numerical method is presented, and its stability analysis discussed. Numerical simulation then demonstrates our idea. Optimal control for the model is further discussed by More >

  • Open Access

    ARTICLE

    A Pseudo-Spectral Scheme for Systems of Two-Point Boundary Value Problems with Left and Right Sided Fractional Derivatives and Related Integral Equations

    I. G. Ameen1, N. A. Elkot2, M. A. Zaky3,*, A. S. Hendy4,5, E. H. Doha2

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 21-41, 2021, DOI:10.32604/cmes.2021.015310 - 28 June 2021

    Abstract We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left- and right-sided fractional derivatives. The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations. Then, a Legendre-based spectral collocation method is developed for solving the transformed system. Therefore, we can make good use of the advantages of the Gauss quadrature rule. We present the construction and analysis of the collocation method. These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding More >

  • Open Access

    ARTICLE

    Spectral Solutions of Linear and Nonlinear BVPs Using Certain Jacobi Polynomials Generalizing Third- and Fourth-Kinds of Chebyshev Polynomials

    W. M. Abd-Elhameed1,2,*, Asmaa M. Alkenedri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 955-989, 2021, DOI:10.32604/cmes.2021.013603 - 19 February 2021

    Abstract This paper is dedicated to implementing and presenting numerical algorithms for solving some linear and nonlinear even-order two-point boundary value problems. For this purpose, we establish new explicit formulas for the high-order derivatives of certain two classes of Jacobi polynomials in terms of their corresponding Jacobi polynomials. These two classes generalize the two celebrated non-symmetric classes of polynomials, namely, Chebyshev polynomials of third- and fourth-kinds. The idea of the derivation of such formulas is essentially based on making use of the power series representations and inversion formulas of these classes of polynomials. The derived formulas More >

  • Open Access

    ARTICLE

    A Comparative Numerical Study of Parabolic Partial Integro-Differential Equation Arising from Convection-Diffusion

    Kamil Khan1, Arshed Ali1,*, Fazal-i-Haq2, Iltaf Hussain3, Nudrat Amir4

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 673-692, 2021, DOI:10.32604/cmes.2021.012730 - 21 January 2021

    Abstract This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation (PIDE) with a weakly singular kernel. Cubic trigonometric B-spline (CTBS) functions are used for interpolation in both methods. The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations. The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values. An efficient tridiagonal solver is used for the solution of the linear system… More >

  • Open Access

    ARTICLE

    A Meshless Collocation Method with Barycentric Lagrange Interpolation for Solving the Helmholtz Equation

    Miaomiao Yang, Wentao Ma, Yongbin Ge*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 25-54, 2021, DOI:10.32604/cmes.2021.012575 - 22 December 2020

    Abstract In this paper, Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation. First of all, the interpolation basis function is applied to treat the spatial variables and their partial derivatives, and the collocation method for solving the second order differential equations is established. Secondly, the differential equations on a given test node. Finally, based on three kinds of test nodes, numerical experiments show that the present scheme can not only calculate the high wave numbers problems, but also calculate the variable wave numbers problems. More >

  • Open Access

    ARTICLE

    MAGNETO-CONVECTION OF ALUMINA - WATER NANOFLUID WITHIN THIN HORIZONTAL LAYERS USING THE REVISED GENERALIZED BUONGIORNO'S MODEL

    A.Wakifa,* , Z. Boulahiaa, A. Amineb , I.L. Animasaunc , M. I. Afridid, M. Qasimd , R. Sehaquia

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-15, 2019, DOI:10.5098/hmt.12.3

    Abstract The significance of an externally applied magnetic field and an imposed negative temperature gradient on the onset of natural convection in a thin horizontal layer of alumina-water nanofluid for various sizes of spherical alumina nanoparticles (e.g., 30 More >

  • Open Access

    ARTICLE

    A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate

    Hongwei Guo3, Xiaoying Zhuang3,4,5, Timon Rabczuk1,2,*

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 433-456, 2019, DOI:10.32604/cmc.2019.06660

    Abstract In this paper, a deep collocation method (DCM) for thin plate bending problems is proposed. This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning. Besides, the proposed DCM is based on a feedforward deep neural network (DNN) and differs from most previous applications of deep learning for mechanical problems. First, batches of randomly distributed collocation points are initially generated inside the domain and along the boundaries. A loss function is built with the aim that the governing partial differential equations (PDEs) of Kirchhoff plate bending problems, and the boundary/initial conditions More >

  • Open Access

    ARTICLE

    Solving Fractional Integro-Differential Equations by Using Sumudu Transform Method and Hermite Spectral Collocation Method

    Y. A. Amer1, A. M. S. Mahdy1, 2, *, E. S. M. Youssef1

    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 161-180, 2018, DOI:10.3970/cmc.2018.054.161

    Abstract In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method. The fractional derivatives are described in the Caputo sense. The applications related to Sumudu transform method and Hermite spectral collocation method have been developed for differential equations to the extent of access to approximate analytical solutions of fractional integro-differential equations. More >

  • Open Access

    ARTICLE

    A LARGE PARAMETER SPECTRAL PERTURBATION METHOD FOR NONLINEAR SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS THAT MODELS BOUNDARY LAYER FLOW PROBLEMS

    T. M. Agbajea,b, S. S. Motsaa,* , S. Mondalc,† , P. Sibandaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-13, 2017, DOI:10.5098/hmt.9.36

    Abstract In this work, we present a compliment of the spectral perturbation method (SPM) for solving nonlinear partial differential equations (PDEs) with applications in fluid flow problems. The (SPM) is a series expansion based approach that uses the Chebyshev spectral collocation method to solve the governing sequence of differential equation generated by the perturbation series approximation. Previously the SPM had the limitation of being used to solve problems with small parameters only. This current investigation seeks to improve the performance of the SPM by doing the series expansion about a large parameter. The new method namely… More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin and RBFs Collocation Methods for Solving 2D Fractional Klein-Kramers Dynamics Equation on Irregular Domains

    M. Dehghan1, M. Abbaszadeh2, A. Mohebbi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.6, pp. 481-516, 2015, DOI:10.3970/cmes.2015.107.481

    Abstract In the current paper the two-dimensional time fractional Klein-Kramers equation which describes the subdiffusion in the presence of an external force field in phase space has been considered. The numerical solution of fractional Klein-Kramers equation is investigated. The proposed method is based on using finite difference scheme in time variable for obtaining a semi-discrete scheme. Also, to achieve a full discretization scheme, the Kansa's approach and meshless local Petrov-Galerkin technique are used to approximate the spatial derivatives. The meshless method has already proved successful in solving classic and fractional differential equations as well as for… More >

Displaying 11-20 on page 2 of 69. Per Page