Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (76)
  • Open Access

    ARTICLE

    An Analytical Model for Explosive Compaction of Powder to Cylindrical Billets through Axial Detonation

    B. Srivathsa1, N. Ramakrishnan2

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 9-24, 2008, DOI:10.3970/cmc.2008.007.009

    Abstract An analytical model, describing an explosive compaction process performed axially on a powder assembly of cylindrical geometry, is discussed. The powder is encapsulated in a cylindrical metal container surrounded by an explosive pad, which is detonated parallel to the major axis of the compact. The pressure generated in the powder is a function of the nature and the thickness of the explosive material as well as the powder characteristics. The model is based on the principle of shock propagation in powder aggregate and, the detonation as well as the refraction wave characteristics of the explosives. For the purpose of validation… More >

  • Open Access

    ARTICLE

    An Adaptive Multi-resolution Method for Solving PDE's

    V. Kozulić1, H. Gotovac1, B. Gotovac1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 51-70, 2007, DOI:10.3970/cmc.2007.006.051

    Abstract In this paper, we present a multi-resolution adaptive algorithm for solving problems described by partial differential equations. The technique is based on the collocation method using Fup basis functions, which belong to a class of Rvachev's infinitely differentiable finite functions. As it is possible to calculate derivation values of Fup basis functions of high degree in a precise yet simple way, so it is possible to efficiently apply strong formulation procedures. The mesh free method developed in this work is named Adaptive Fup Collocation Method (AFCM). The distribution of collocation points within the observed area is changed adaptively, depending on… More >

  • Open Access

    ARTICLE

    Real-Time Visual Tracking with Compact Shape and Color Feature

    Zhenguo Gao1, Shixiong Xia1, Yikun Zhang1, Rui Yao1,*, Jiaqi Zhao1, Qiang Niu1, Haifeng Jiang2

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 509-521, 2018, DOI: 10.3970/cmc.2018.02634

    Abstract The colour feature is often used in the object tracking. The tracking methods extract the colour features of the object and the background, and distinguish them by a classifier. However, these existing methods simply use the colour information of the target pixels and do not consider the shape feature of the target, so that the description capability of the feature is weak. Moreover, incorporating shape information often leads to large feature dimension, which is not conducive to real-time object tracking. Recently, the emergence of visual tracking methods based on deep learning has also greatly increased the demand for computing resources… More >

  • Open Access

    ARTICLE

    Prediction of Compressive Strength of Various SCC Mixes Using Relevance Vector Machine

    G. Jayaprakash1, M. P. Muthuraj2,*

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 83-102, 2018, DOI:10.3970/cmc.2018.054.083

    Abstract This paper discusses the applicability of relevance vector machine (RVM) based regression to predict the compressive strength of various self compacting concrete (SCC) mixes. Compressive strength data various SCC mixes has been consolidated by considering the effect of water cement ratio, water binder ratio and steel fibres. Relevance vector machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM has an identical functional form to the support vector machine, but provides probabilistic classification and regression. RVM is based on a Bayesian formulation of a linear model with an appropriate… More >

  • Open Access

    ARTICLE

    Prediction of Compressive Strength of Self-Compacting Concrete Using Intelligent Computational Modeling

    Susom Dutta1, A. Ramach,ra Murthy2, Dookie Kim3, Pijush Samui4

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 157-174, 2017, DOI:10.3970/cmc.2017.053.167

    Abstract In the present scenario, computational modeling has gained much importance for the prediction of the properties of concrete. This paper depicts that how computational intelligence can be applied for the prediction of compressive strength of Self Compacting Concrete (SCC). Three models, namely, Extreme Learning Machine (ELM), Adaptive Neuro Fuzzy Inference System (ANFIS) and Multi Adaptive Regression Spline (MARS) have been employed in the present study for the prediction of compressive strength of self compacting concrete. The contents of cement (c), sand (s), coarse aggregate (a), fly ash (f), water/powder (w/p) ratio and superplasticizer (sp) dosage have been taken as inputs… More >

  • Open Access

    ARTICLE

    Research on the Damage of Porosityand Permeabilitydue to Perforation on Sandstone in the Compaction Zone

    Shifeng Xue1,2, Xiuxing Zhu1,2, Lin Zhang3, Shenghu Zhu4, Guigen Ye1,5

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 21-42, 2016, DOI:10.3970/cmc.2016.051.021

    Abstract A perforating hole is a channel through which the oil and gas in a reservoir pass into the production well bore. During the process of perforating due to explosion, the surrounding sandstone will be damaged to a certain extent, which will increase the well bore skin and lead to the decrease of production consequently. In this work a mechanical model of perforating damage is developed to describe the influences of perforating due to explosion on the porosity and permeability of the surrounding sandstone near the compaction zone. Based on this developed model, the important data related to the damage of… More >

Displaying 71-80 on page 8 of 76. Per Page