Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (182)
  • Open Access

    ARTICLE

    An Improved Concrete Damage Model for Impact Analysis of Concrete Structural Components by using Finite Element Method

    A. Ramachandra Murthy1, G.S. Palani1, Smitha Gopinath1, V. Ramesh Kumar1, Nagesh R. Iyer1

    CMC-Computers, Materials & Continua, Vol.37, No.2, pp. 77-96, 2013, DOI:10.3970/cmc.2013.037.077

    Abstract This paper presents the development of an improved concrete damage model for projectile impact on concrete structural components. The improvement is in terms of reduction of input material parameters for nonlinear transient dynamic impact analysis by employing concrete damage model. The experimental data such as pressure vs volumetric strain, triaxial compression failure and pressure vs stress difference have been used for evaluation of the important parameters of concrete damage model. Various contact algorithms have been outlined briefly to model the interface between the projectile and target. The nonlinear explicit transient dynamic analysis has been carried out by using finite element… More >

  • Open Access

    ARTICLE

    Fracture Analysis of Concrete Structural Components Accounting for Tension Softening Effect

    A. Rama Ch,ra Murthy1,2, G.S. Palani1, Nagesh R. Iyer1,3, M Srinivasa Pavan1, Smitha Gopinath1

    CMC-Computers, Materials & Continua, Vol.19, No.2, pp. 135-154, 2010, DOI:10.3970/cmc.2010.019.135

    Abstract This paper presents methodologies for fracture analysis of concrete structural components with and without considering tension softening effect. Stress intensity factor (SIF) is computed by using analytical approach and finite element analysis. In the analytical approach, SIF accounting for tension softening effect has been obtained as the difference of SIF obtained using linear elastic fracture mechanics (LEFM) principles and SIF due to closing pressure. Superposition principle has been used by accounting for non-linearity in incremental form. SIF due to crack closing force applied on the effective crack face inside the process zone has been computed using Green's function approach. In… More >

Displaying 181-190 on page 19 of 182. Per Page