Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access


    Preparation of Oil Shale Ash Filled High Density Polyethylene Composite Materials and their Characterization


    Journal of Polymer Materials, Vol.38, No.1-2, pp. 137-151, 2021, DOI:10.32381/JPM.2021.38.1-2.11

    Abstract Composite of oil Shale ash (OSA) filler and high density polyethylene (HDPE) matrix was formulated and studied. OSA mainly composed of Ca, Si, and Fe most of which in oxide forms. OSA-HDPE composite with 0, 5, 10, 15, 20, and 25 wt. % OSA were produced using extrusion and hot press. Mechanical, morphological, and water uptake properties of the composite are discussed herein. While the tensile stress at yield, 47 MPa, restored its value close to the neat HDPE, an increase in the mean values of the tensile stress at rapture from 19 to 33… More >

  • Open Access


    Tensile Failure Characterization of Glass/Epoxy Composites using Acoustic Emission RMS Data


    Journal of Polymer Materials, Vol.40, No.3-4, pp. 215-226, 2023, DOI:10.32381/JPM.2023.40.3-4.7

    Abstract The acoustic emission monitoring with artificial neural networks predicts the ultimate strength of glass/epoxy composite laminates using Acoustic Emission Data. The ultimate loads of all the specimens were used to characterise the emission of hits during failure modes. The six layered glass fiber laminates were prepared (in woven mat form) with epoxy as the binding medium by hand lay-up technique. At room temperature, with a pressure of 30 kg/cm2, the laminates were cured. The laminates of standard dimensions as per ASTM D3039 for the tensile test were cut from the lamina. The Acoustic Emission (AE) test More >

  • Open Access


    A Double-Phase-Field Model for the Cohesive Failure Modelling in Laminated Composite Materials

    Haibo Su1, Liang Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09611

    Abstract This work presents a novel double-phase-field formulation to characterize the distinct damage mechanisms and the mixed-mode cohesive fracture behaviors in fiber-reinforced composites (FRC). A hybrid phase field formulation is first proposed to derive the phase field and stress through distinct energy functionals. Then, the phase field degradation function and material damaged stiffness are properly defined based on the unique failure mechanisms, which enable the derivation of the embedded Hashin failure criteria for fiber and matrix failures in FRC respectively. Furthermore, the mixed-model cohesive law with linear softening is analytically derived within the phase field framework More >

  • Open Access


    Unsteady Heat Transfer in Bilayer, and Three-Layer Materials

    Toufik Sahabi1,*, Smain Balaska2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 977-990, 2023, DOI:10.32604/fdmp.2022.022059

    Abstract The heat transfer equation is used to determine the heat flow by conduction through a composite material along the real axis. An analytical dimensionless analysis is implemented in the framework of a separation of variables method (SVM). This approach leads to an Eigenvalues problem that is solved by the Newton’s method. Two types of dynamics are found: An unsteady condition (in the form of jumps or drops in temperatures depending on the considered case), and a permanent equilibrium (tending to the ambient temperature). The validity and effectiveness of the proposed approach for any number of More > Graphic Abstract

    Unsteady Heat Transfer in Bilayer, and Three-Layer Materials

  • Open Access


    Controlled-Release of Plant Volatiles: New Composite Materials of Porous Carbon-Citral and Their Fungicidal Activity against Exobasidium vexans

    Yaoguo Liu1, Yao Chen2, Huifang Liu2, Wei Chen1, Zhiwei Lei2, Chiyu Ma2, Jie Yin1, Wen Yang2,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 811-823, 2023, DOI:10.32604/jrm.2022.022594

    Abstract Citral (Eo) exhibits excellent fungicidal activities. However, it is difficult to maintain long-term fungicidal activity due to its strong volatility. Herein, a controlled-release strategy by using biomass-derived porous carbon (BC) was developed to overcome the drawback of Eo. New composite materials were prepared by loading Eo on tea stem porous carbon (BC@Eo), and their controlled-release fungicidal activity against Exobasidium vexans was assessed. BC with a large specific surface area of 1001.6 m2/g and mesoporous structure was fabricated through carbonization temperature of 700°C. The BC@Eo materials were characterized using Fourier-transform infrared spectroscopy and X-ray powder diffraction. The results… More > Graphic Abstract

    Controlled-Release of Plant Volatiles: New Composite Materials of Porous Carbon-Citral and Their Fungicidal Activity against <i>Exobasidium vexans</i>

  • Open Access


    Biodegradability and Compostability of Lignocellulosic Based Composite Materials

    Sudhakar Muniyasamy1, Andrew Anstey2, Murali M. Reddy1, Manju Misra1,2, Amar Mohanty1,2,*

    Journal of Renewable Materials, Vol.1, No.4, pp. 253-272, 2013, DOI:10.7569/JRM.2013.634117

    Abstract Lignocellulosic composites have attracted interest from both academia and industry due to their benefi cial environmental and sustainability attributes. The lignocellulosic industry has seen remarkable improvements in the development of composites for high performance applications. Both biodegradable as well as non-biodegradable polymers are used in the design and engineering of lignocellulosic composites. Biodegradability studies of lignocellulosic composites in soil and composting environments help in planning their end-life management. Biodegradability tests are complex and dependent on the environment in which the testing is carried out. Due to this, standards have been developed by international agencies such… More >

  • Open Access


    Sustainability Assessment of Protein-Soil Composite Materials for Limited Resource Environments

    Henning Roedel1, Isamar Rosa Plata1, Michael Lepech1,*, David Loftus2

    Journal of Renewable Materials, Vol.3, No.3, pp. 183-194, 2015, DOI:10.7569/JRM.2015.634107

    Abstract This article presents the sustainability assessment of a novel biocomposite material that is under investigation by NASA for use in construction in limited resource environments. The composite consists of soil particles solidified by a protein binding agent. Preliminary compressive strength data suggests the biocomposite could be used for numerous construction applications. To assess the biocomposite’s potential for use in sustainable construction, a comparative process-based life cycle assessment between biocomposite and concrete pavers was performed to analyze the life cycle primary energy and IMPACT 2002+ points of both types of pavers. Results show that the concrete More >

  • Open Access


    Effects of Porous Graphene on LiOH Based Composite Materials for Low Temperature Thermochemical Heat Storage

    Lisheng Deng1,2, Hongyu Huang2,*, Zhaohong He2, Shijie Li2, Zhen Huang2, Mitsuhiro Kubota3, You Zhou4,*, Dezhen Chen1

    Journal of Renewable Materials, Vol.10, No.11, pp. 2895-2906, 2022, DOI:10.32604/jrm.2022.019071

    Abstract Thermochemical heat storage material inorganic hydrate LiOH is selected as a promising candidate material for storing low-temperature heat energy because of its high energy density (1440 kJ/kg) and mild reaction process. However, the low hydration rate of LiOH limits the performance of low temperature thermochemical heat storage system as well as the thermal conductivity. In this study, porous-graphene/LiOH composite thermochemical heat storage materials with strong water sorption property and higher thermal conductivity were synthesized by hydrothermal process. The experimental results show that the hydration rate of the composites was greatly improved. The heat storage density More >

  • Open Access


    Introduction to the Special Issue on Mechanics of Composite Materials and Structures

    Jian Xiong1,*, Jinshui Yang2, Hui Li3, Wu Xu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 357-359, 2022, DOI:10.32604/cmes.2022.023418

    Abstract This article has no abstract. More >

  • Open Access


    Crack Detection in Composite Materials Using McrowDNN

    R. Saveeth1,*, S. Uma Maheswari2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 983-1000, 2022, DOI:10.32604/iasc.2022.023455

    Abstract In the aerospace industry, composite materials are becoming more common. The presence of a crack in an aircraft makes it weaker and more dangerous, and it can lead to complete fracture and catastrophic failure. To predict the position and depth of a crack, various methods have been developed. For aircraft repair, crack diagnosis is extremely important. Even then, due to uncertainties arising from sources such as environmental conditions, packing, and intrinsic material property changes, accurate diagnosis in real engineering applications remains a challenge. Deep learning (DL) approaches have demonstrated powerful recognition potential in a variety… More >

Displaying 1-10 on page 1 of 38. Per Page