Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access


    Homogenization Analysis for Particulate Composite Materials using the Boundary Element Method

    Hiroshi Okada1, Yasuyoshi Fukui1, Noriyoshi Kumazawa1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.2, pp. 135-150, 2004, DOI:10.3970/cmes.2004.005.135

    Abstract A method to obtain the effective mechanical properties of particulate composite materials is presented in this paper. The methodology is based on the boundary element method (BEM) coupled with analytical solutions for ellipsoidal inclusions such as Eshelby's tensor. There is no numerical integration for the surfaces or the domains of distributed particles, and, therefore, proposed technique is very efficient. Homogenization analysis based on representative volume element (RVE) is carried out considering a unit cell containing many particles (up to 1000). By using a conventional BEM approach (i.e., multi-region BEM), it would be extremely difficult to More >

  • Open Access


    Improvement of Natural Fiber Composite Materials by Carbon Fibers

    Meriem Fehri1,2, Rachid Robleh Ragueh1, Alexandre Vivet1*, Fakhreddine Dammak2, Mohamed Haddar2

    Journal of Renewable Materials, Vol.5, No.1, pp. 38-47, 2017, DOI:10.7569/JRM.2016.634123

    Abstract The purpose of this work is the improvement of flax fiber-reinforced composites obtained by vacuum molding in order to encourage their insertion into industrial products. The relatively high degree of porosity in these kinds of composites, due to the lack of compatibility between epoxy matrix and flax fibers and the hydrophilicity of flax fiber, remains a major constraint to their use in the industrial world. Hence, we have used a combination of carbon fibers with those of flax in order to optimize the properties of the assembly. Several stacking sequences have been tested in order More >

  • Open Access


    Renewable Additives that Improve Water Resistance of Cellulose Composite Materials

    Heather L. Buckley1*, Caitlin H. Touchberry2, Jonathan P. McKinley2, Zachary S. Mathe1, Hurik Muradyan1, Hannah Ling2, Raj P. Fadadu1, Martin J. Mulvihill1, Susan E. Amrose2

    Journal of Renewable Materials, Vol.5, No.1, pp. 1-13, 2017, DOI:10.7569/JRM.2016.634109

    Abstract Waste cardboard is an underutilized resource that can be redirected for the creation of safer and higher quality building materials for low-income housing in the developing world, as well as to produce better materials for indoor environments in developed-world contexts. Using a renewable biobased binder and benign additives, we have improved the water resistance of a cardboard-based composite material, overcoming one of the major barriers to scaling and adoption of this class of materials. Resistance to water uptake was significantly increased with several additives and was increased over 900-fold in the best case. Strength and More >

  • Open Access


    Improved Permeability Properties for Bacterial Cellulose/ Montmorillonite Hybrid Bionanocomposite Membranes by In-Situ Assembling

    Itxaso Algar1, Clara Garcia-Astrain1, Alba Gonzalez2, Loli Martin3, Nagore Gabilondo1, Aloña Retegi1*, Arantxa Eceiza1*

    Journal of Renewable Materials, Vol.4, No.1, pp. 57-65, 2016, DOI:10.7569/JRM.2015.634124

    Abstract Bacterial cellulose/montmorillonite (BCMMT) hybrid bionanocomposite membranes were prepared by in-situ assembling or one-step biosynthesis process. The presence of MMT in BC membranes was confi rmed by thermogravimetric analysis and quantifi ed by mass spectrometry, resulting in bionanocomposites with MMT contents between 7–13 wt%. The incorporation of MMT during BC biosynthesis modifi ed BC morphology and led to lower porosity, even though higher water holding capacity was achieved. Bionanocomposites showed improved thermal stability and water vapor and oxygen gas barrier properties up to 70 and 80% with respect to neat BC membranes. This improvement was related More >

  • Open Access


    The Numerical Accuracy Analysis of Asymptotic Homogenization Method and Multiscale Finite Element Method for Periodic Composite Materials

    Hao Dong1, Yufeng Nie1,2, Zihao Yang1, Yang Zhang1, Yatao Wu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.5, pp. 395-419, 2016, DOI:10.3970/cmes.2016.111.395

    Abstract In this paper, we discuss the numerical accuracy of asymptotic homogenization method (AHM) and multiscale finite element method (MsFEM) for periodic composite materials. Through numerical calculation of the model problems for four kinds of typical periodic composite materials, the main factors to determine the accuracy of first-order AHM and second-order AHM are found, and the physical interpretation of these factors is given. Furthermore, the way to recover multiscale solutions of first-order AHM and MsFEM is theoretically analyzed, and it is found that first-order AHM and MsFEM provide similar multiscale solutions under some assumptions. Finally, numerical More >

  • Open Access


    Meshfree Method for the Topological Design of Microstructural Composites

    Y. Wang1, E. Lü1,2, J. Zhao1, J. Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.1, pp. 35-53, 2015, DOI:10.3970/cmes.2015.109.035

    Abstract Meshfree methods have found good applications in many new researches, which show very good potential to be powerful numerical tools. As an alternative to the mesh based methods, meshfree methods have the advantage of not using a predefined mesh for the domain discretization. In this study, a mesh free scheme based on the radial point interpolation method was used to solve the topological design of microstructures for composite materials. The explicit form of the radial point interpolation method (RPIM) interpolation augmented with polynomials is presented, which satisfies range-restricted properties and is applicable to integrate a More >

  • Open Access


    An Advanced ACA/BEM for Solving 2D Large-Scale Elastic Problems with Multi-Connected Domains

    T. Gortsas1, S.V. Tsinopoulos2, D. Polyzos1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.4, pp. 321-343, 2015, DOI:10.3970/cmes.2015.107.321

    Abstract An advanced Boundary Element method (BEM) accelerated via Adaptive Cross Approximation (ACA) and Hierarchical Matrices (HM) techniques is presented for the solution of large-scale elastostatic problems with multi-connected domains like in fiber reinforced composite materials. Although the proposed ACA/ BEM is demonstrated for two-dimensional (2D) problems, it is quite general and it can be used for 3D problems. Different forms of ACA technique are employed for exploring their efficiency when they combined with a BEM code. More precisely, the fully and partially pivoted ACA with and without recompression are utilized, while the solution of the More >

  • Open Access


    Numerical Study of Polymer Composites in Contact

    L. Rodríguez-Tembleque1, A. Sáez1, F.C. Buroni1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.2, pp. 131-158, 2013, DOI:10.3970/cmes.2013.096.131

    Abstract A boundary element based formulation is applied to study numerically the tribological behavior of fiber-reinforced plastics (FRP) under different frictional contact conditions, taking into account the micromechanics of FRP. Micromechanical models presented consider continuous and short fiber reinforced plastics configurations. The Boundary Element Method (BEM) with an explicit approach for fundamental solutions evaluation is considered for computing the elastic influence coefficients. Signorini’s contact conditions and an orthotropic law of friction on the potential contact zone are enforced by contact operators over the augmented Lagrangian. The proposed methodology is applied to study carbon FRP under frictional More >

  • Open Access


    Preconditioned Conjugate Gradient Method Enhanced by Deflation of Rigid Body Modes Applied to Composite Materials

    T.B Jönsthövel1, M.B. van Gijzen2, C.Vuik2, C. Kasbergen1, A. Scarpas1

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.2, pp. 97-118, 2009, DOI:10.3970/cmes.2009.047.097

    Abstract The introduction of computed x-ray tomography allows for the construction of high quality, material-per-element based 3D meshes in the field of structural mechanics. The use of these meshes enables a shift from meso to micro scale analysis of composite materials like cement concrete, rocks and asphalt concrete. Unfortunately, because of the extremely long execution time, memory and storage space demands, the majority of commercially available finite element packages are not capable of handling efficiently the most computationally demanding operation of the finite element solution process, that is, the inversion of the structural stiffness matrix. To More >

  • Open Access


    A new modelling approach based on Binary Model and X-FEM to investigate the mechanical behaviour of textile reinforced composites

    G. Haasemann1, M. Kästner2, V. Ulbricht3

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.1, pp. 35-58, 2009, DOI:10.3970/cmes.2009.042.035

    Abstract The purpose of this paper is the presentation of a new efficient modelling strategy based on the combination of Binary Model and Extended Finite Element Method (X-FEM). It is applied to represent the internal architecture of textile reinforced composites where the resin-saturated fabric is characterised by a complex geometry. Homogenisation methods are used to compute the effective elastic material properties. Thereby, the discrete formulation of periodic boundary conditions is adapted regarding additional degrees of freedom used by finite elements which are based on the X-FEM. Finally, the results in terms of effective material properties reveal More >

Displaying 21-30 on page 3 of 38. Per Page