Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Machine Learning Based Uncertain Free Vibration Analysis of Hybrid Composite Plates

    Bindi Saurabh Thakkar1, Pradeep Kumar Karsh2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-22, 2026, DOI:10.32604/cmc.2025.072839 - 09 December 2025

    Abstract This study investigates the uncertain dynamic characterization of hybrid composite plates by employing advanced machine-assisted finite element methodologies. Hybrid composites, widely used in aerospace, automotive, and structural applications, often face variability in material properties, geometric configurations, and manufacturing processes, leading to uncertainty in their dynamic response. To address this, three surrogate-based machine learning approaches like radial basis function (RBF), multivariate adaptive regression splines (MARS), and polynomial neural networks (PNN) are integrated with a finite element framework to efficiently capture the stochastic behavior of these plates. The research focuses on predicting the first three natural frequencies… More >

  • Open Access

    ARTICLE

    An Artificial Intelligence-Based Scheme for Structural Health Monitoring in CFRE Laminated Composite Plates under Spectrum Fatigue Loading

    Wael A. Altabey*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1145-1165, 2025, DOI:10.32604/sdhm.2025.068922 - 05 September 2025

    Abstract In the fabrication and monitoring of parts in composite structures, which are being used more and more in a variety of engineering applications, the prediction and fatigue failure detection in composite materials is a difficult problem. This difficulty arises from several factors, such as the lack of a comprehensive investigation of the fatigue failure phenomena, the lack of a well-defined fatigue damage theory used for fatigue damage prediction, and the inhomogeneity of composites because of their multiple internal borders. This study investigates the fatigue behavior of carbon fiber reinforced with epoxy (CFRE) laminated composite plates… More > Graphic Abstract

    An Artificial Intelligence-Based Scheme for Structural Health Monitoring in CFRE Laminated Composite Plates under Spectrum Fatigue Loading

  • Open Access

    PROCEEDINGS

    Low-Frequency Structural Vibration Suppression for Inertial Amplification Stiffened Composite Plate

    Yonghang Sun1,2, Anyu Xu2, Heow Pueh Lee2, Hui Zheng1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.010895

    Abstract Metamaterials with inertial amplification components exhibit unique bandgap behaviors which can be utilized on the vibration suppression of mechanical structures. In this study, novel cantilever-type inertial amplification mechanisms are periodically attached to the stiffened composite plate to realize the low-frequency bandgaps and vibration suppression. This type of metamaterial mitigates the vibration by amplifying the inertia of the added small mass, which has great application potential in many industrial scenes. For the sake of the efficient calculations, a semi-analytical method based on the energy generalized variational principle is promoted, which can predict the bandgap behaviors and… More >

  • Open Access

    ARTICLE

    Numerical Investigation on Vibration Performance of Flexible Plates Actuated by Pneumatic Artificial Muscle

    Zhimin Zhao1,2, Jie Yan3, Shangbin Wang1,2, Yuanhao Tie4, Ning Feng1,2,5,*

    Sound & Vibration, Vol.56, No.4, pp. 307-317, 2022, DOI:10.32604/sv.2022.028797 - 03 March 2023

    Abstract This paper theoretically introduced the feasibility of changing the vibration characteristics of flexible plates by using bio-inspired, extremely light, and powerful Pneumatic Artificial Muscle (PAM) actuators. Many structural plates or shells are typically flexible and show high vibration sensitivity. For this reason, this paper provides a way to achieve active vibration control for suppressing the oscillations of these structures to meet strict stability, safety, and comfort requirements. The dynamic behaviors of the designed plates are modeled by using the finite element (FE) method. As is known, the output force vs. contraction curve of PAM is nonlinear… More >

  • Open Access

    ARTICLE

    Agglomeration Effects on Static Stability Analysis of Multi-Scale Hybrid Nanocomposite Plates

    Farzad Ebrahimi1, Ali Dabbagh2, Abbas Rastgoo2, Timon Rabczuk3, *

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 41-64, 2020, DOI:10.32604/cmc.2020.07947 - 30 March 2020

    Abstract We propose a multiscale approach to study the influence of carbon nanotubes’ agglomeration on the stability of hybrid nanocomposite plates. The hybrid nanocomposite consists of both macro- and nano-scale reinforcing fibers dispersed in a polymer matrix. The equivalent material properties are calculated by coupling the Eshelby-Mori-Tanaka model with the rule of mixture accounting for effects of CNTs inside the generated clusters. Furthermore, an energy based approach is implemented to obtain the governing equations of the problem utilizing a refined higher-order plate theorem. Subsequently, the derived equations are solved by Galerkin’s analytical method to predict the More >

  • Open Access

    ARTICLE

    Analysis of High-Cr Cast Iron/Low Carbon Steel Wear-resistant Laminated Composite Plate Prepared by Hot-rolled Symmetrical Billet

    Yanwei Li1, Yugui Li1, Peisheng Han1, Shun Wang1, Zhengyi Jiang1,2, Xiaogang Wang1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.1, pp. 109-123, 2018, DOI:10.31614/cmes.2018.04077

    Abstract This study developed a new technology for preparing high-chromium cast iron (HCCI)/low-carbon steel (LCS) wear-resistant composite plates by hot rolling at a 1050 °C and a rolling speed of 0.2 m/s. The effects of different rolling reductions (30%, 45%, and 60%) on the microstructure (interface and HCCI layer) and mechanical properties (bonding strength, hardness, and wear resistance) of the composite plate were studied. SEM images showed that when the reduction was increased, no impurities and interlayers were found between the microscopic interfaces after hot rolling, and the bonding interface exhibited a wave-like shape. EDS analysis… More >

  • Open Access

    ARTICLE

    Neural Network-Based Second Order Reliability Method (NNBSORM) for Laminated Composite Plates in Free Vibration

    Mena E. Tawfik1, 2, Peter L. Bishay3, *, Edward A. Sadek1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.1, pp. 105-129, 2018, DOI:10.3970/cmes.2018.115.105

    Abstract Monte Carlo Simulations (MCS), commonly used for reliability analysis, require a large amount of data points to obtain acceptable accuracy, even if the Subset Simulation with Importance Sampling (SS/IS) methods are used. The Second Order Reliability Method (SORM) has proved to be an excellent rapid tool in the stochastic analysis of laminated composite structures, when compared to the slower MCS techniques. However, SORM requires differentiating the performance function with respect to each of the random variables involved in the simulation. The most suitable approach to do this is to use a symbolic solver, which renders… More >

  • Open Access

    ARTICLE

    Elastodynamic Analysis of Thick Multilayer Composite Plates by The Boundary Element Method

    J. Useche1, H. Alvarez1

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.4, pp. 277-296, 2015, DOI:10.3970/cmes.2015.107.277

    Abstract Dynamic stress analysis of laminated composites plates represents a relevant task in designing of aerospace, shipbuilding and automotive components where impulsive loads can lead to sudden structural failure. The mechanical complexity inherent to these kind of components makes the numerical modeling an essential engineering analysis tool. This work deals with dynamic analysis of stresses and deformations in laminated composites thick plates using a new Boundary Element Method formulation. Composite laminated plates were modeled using the Reissner’s plate theory. We propose a direct time-domain formulation based on elastostatic fundamental solution for symmetrical laminated thick plates. Formulation More >

  • Open Access

    ARTICLE

    Fractional Order Derivative Model of Viscoelastic layer for Active Damping of Geometrically Nonlinear Vibrations of Smart Composite Plates

    Priyankar Datta1, Manas C. Ray1

    CMC-Computers, Materials & Continua, Vol.49-50, No.1, pp. 47-80, 2015, DOI:10.3970/cmc.2015.049.047

    Abstract This paper deals with the implementation of the one dimensional form of the fractional order derivative constitutive relation for three dimensional analysis of active constrained layer damping (ACLD) of geometrically nonlinear laminated composite plates. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composites (PZCs). The von Kármán type nonlinear strain displacement relations are used to account for the geometric nonlinearity of the plates. A nonlinear smart finite element model (FEM) has been developed. Thin laminated substrate composite plates with various boundary conditions and stacking sequences are analyzed to More >

  • Open Access

    ARTICLE

    Matrix Crack Detection in Composite Plate with Spatially Random Material Properties using Fractal Dimension

    K. Umesh1, R. Ganguli1

    CMC-Computers, Materials & Continua, Vol.41, No.3, pp. 215-240, 2014, DOI:10.3970/cmc.2014.041.215

    Abstract Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. More >

Displaying 1-10 on page 1 of 23. Per Page