Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    Finite Element modeling of Nomex® honeycomb cores : Failure and effective elastic properties

    L. Gornet1, S. Marguet2, G. Marckmann3

    CMC-Computers, Materials & Continua, Vol.4, No.2, pp. 63-74, 2006, DOI:10.3970/cmc.2006.004.063

    Abstract The purpose of the present study is to determine the components of the effective elasticity tensor and the failure properties of Nomex® honeycomb cores. In order to carry out this study, the NidaCore software, a program dedicated to Nomex®Cores predictions, has been developed using the Finite Element tool Cast3M-CEA. This software is based on periodic homogenization techniques and on the modelling of structural instability phenomena. The homogenization of the periodic microstructure is realized thanks to a strain energy approach. It assumes the mechanical equivalence between the microstructures of a RVE and a similar homogeneous macroscopic volume. The key point of… More >

  • Open Access

    ARTICLE

    Multiscale Nonlinear Thermo-Mechanical Coupling Analysis of Composite Structures with Quasi-Periodic Properties

    Zihao Yang1, Liang Ma2, Qiang Ma3, Junzhi Cui1,4, Yufeng Nie1, Hao Dong1, Xiaohong An5

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 219-248, 2017, DOI:10.32604/cmc.2017.053.235

    Abstract This paper reports a multiscale analysis method to predict the thermo-mechanical coupling performance of composite structures with quasi-periodic properties. In these material structures, the configurations are periodic and the material coefficients are quasi-periodic, i.e., they depend not only on the microscale information but also on the macro location. Also, a mutual interaction between displacement and temperature fields is considered in the problem, which is our particular interest in this study. The multiscale asymptotic expansions of the temperature and displacement fields are constructed and associated error estimation in nearly pointwise sense is presented. Then, a finite element-difference algorithm based on the… More >

  • Open Access

    ARTICLE

    A Cell Method Stress Analysis in Thin Floor Tiles Subjected to Temperature Variation

    E. Ferretti1

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 293-322, 2013, DOI:10.3970/cmc.2013.036.293

    Abstract The Cell Method is applied in order to model the debonding mechanism in ceramic floor tiles subjected to positive thermal variation. The causes of thermal debonding, very usual in radiant heat floors, have not been fully clarified at the moment. There exist only a few simplified analytical approaches that assimilate this problem to an eccentric tile compression, but these approaches introduce axial forces that, in reality, do not exist. In our work we have abandoned the simplified closed form solution in favor of a numerical solution, which models the interaction between tiles and sub-base more realistically, when the positive thermal… More >

  • Open Access

    ARTICLE

    A New Discrete-Layer Finite Element for Electromechanically Coupled Analyses of Piezoelectric Adaptive Composite Structures

    M. Al-Ajmi1, A. Benjeddou2

    CMC-Computers, Materials & Continua, Vol.23, No.3, pp. 265-286, 2011, DOI:10.3970/cmc.2011.023.265

    Abstract A new discrete layer finite element (DLFE) is presented for electro-mechanically coupled analyses of moderately thick piezoelectric adaptive composite plates. The retained kinematics is based on layer-wise first-order shear deformation theory, and considers the plies top and bottom surfaces in-plane displacements and the plate transverse deflection as mechanical unknowns. The former are assumed in-plane Lagrange linear, while the latter is assumed in-plane full (Lagrange) quadratic; this results in a nine nodes quadrangular (Q9) DLFE. The latter is validated in free-vibrations, first numerically against ANSYS three-dimensional piezoelectric finite elements for a cantilever moderately thick aluminum plate with two co-localized piezoceramic patches,… More >

  • Open Access

    ARTICLE

    Collapse Analysis, Defect Sensitivity and Load Paths in Stiffened Shell Composite Structures

    D.W. Kelly1, M.C.W. Lee1, A.C. Orifici2,3, R.S.Thomson3, R. Degenhardt4,5

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 163-194, 2009, DOI:10.3970/cmc.2009.010.163

    Abstract An experimental program for collapse of curved stiffened composite shell structures encountered a wide range of initial and deep buckling mode shapes. This paper presents work to determine the significance of the buckling deformations for determining the final collapse loads and to understand the source of the variation. A finite element analysis is applied to predict growth of damage that causes the disbonding of stiffeners and defines a load displacement curve to final collapse. The variability in material properties and geometry is then investigated to identify a range of buckling modes and development of deep postbuckling deformation encountered in the… More >

Displaying 31-40 on page 4 of 35. Per Page