Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (387)
  • Open Access

    ARTICLE

    Improving Person Recognition for Single-Person-in-Photos: Intimacy in Photo Collections

    Xiaoyi Duan, Tianqi Zou, Chenyang Wang, Yu Gu, Xiuying Li*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.070683 - 09 December 2025

    Abstract Person recognition in photo collections is a critical yet challenging task in computer vision. Previous studies have used social relationships within photo collections to address this issue. However, these methods often fail when performing single-person-in-photos recognition in photo collections, as they cannot rely on social connections for recognition. In this work, we discard social relationships and instead measure the relationships between photos to solve this problem. We designed a new model that includes a multi-parameter attention network for adaptively fusing visual features and a unified formula for measuring photo intimacy. This model effectively recognizes individuals More >

  • Open Access

    ARTICLE

    CAFE-GAN: CLIP-Projected GAN with Attention-Aware Generation and Multi-Scale Discrimination

    Xuanhong Wang1, Hongyu Guo1, Jiazhen Li1, Mingchen Wang1, Xian Wang1, Yijun Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.069482 - 10 November 2025

    Abstract Over the past decade, large-scale pre-trained autoregressive and diffusion models rejuvenated the field of text-guided image generation. However, these models require enormous datasets and parameters, and their multi-step generation processes are often inefficient and difficult to control. To address these challenges, we propose CAFE-GAN, a CLIP-Projected GAN with Attention-Aware Generation and Multi-Scale Discrimination, which incorporates a pre-trained CLIP model along with several key architectural innovations. First, we embed a coordinate attention mechanism into the generator to capture long-range dependencies and enhance feature representation. Second, we introduce a trainable linear projection layer after the CLIP text… More >

  • Open Access

    ARTICLE

    Intrusion Detection and Security Attacks Mitigation in Smart Cities with Integration of Human-Computer Interaction

    Abeer Alnuaim*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-33, 2026, DOI:10.32604/cmc.2025.069110 - 10 November 2025

    Abstract The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats. In the evolving landscape of cybersecurity, the efficacy of Intrusion Detection Systems (IDS) is increasingly measured by technical performance, operational usability, and adaptability. This study introduces and rigorously evaluates a Human-Computer Interaction (HCI)-Integrated IDS with the utilization of Convolutional Neural Network (CNN), CNN-Long Short Term Memory (LSTM), and Random Forest (RF) against both a Baseline Machine Learning (ML) and a Traditional IDS model, through an extensive experimental framework encompassing many performance metrics, including detection latency, accuracy, alert prioritization, classification… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Gender-Based Customer Behavior Analytics in Retail Spaces Using Computer Vision

    Ginanjar Suwasono Adi1, Samsul Huda2,*, Griffani Megiyanto Rahmatullah3, Dodit Suprianto1, Dinda Qurrota Aini Al-Sefy3, Ivon Sandya Sari Putri4, Lalu Tri Wijaya Nata Kusuma5

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068619 - 10 November 2025

    Abstract In the competitive retail industry of the digital era, data-driven insights into gender-specific customer behavior are essential. They support the optimization of store performance, layout design, product placement, and targeted marketing. However, existing computer vision solutions often rely on facial recognition to gather such insights, raising significant privacy and ethical concerns. To address these issues, this paper presents a privacy-preserving customer analytics system through two key strategies. First, we deploy a deep learning framework using YOLOv9s, trained on the RCA-TVGender dataset. Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate More >

  • Open Access

    ARTICLE

    An Embedded Computer Vision Approach to Environment Modeling and Local Path Planning in Autonomous Mobile Robots

    Rıdvan Yayla, Hakan Üçgün*, Onur Ali Korkmaz

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4055-4087, 2025, DOI:10.32604/cmes.2025.072703 - 23 December 2025

    Abstract Recent advancements in autonomous vehicle technologies are transforming intelligent transportation systems. Artificial intelligence enables real-time sensing, decision-making, and control on embedded platforms with improved efficiency. This study presents the design and implementation of an autonomous radio-controlled (RC) vehicle prototype capable of lane line detection, obstacle avoidance, and navigation through dynamic path planning. The system integrates image processing and ultrasonic sensing, utilizing Raspberry Pi for vision-based tasks and Arduino Nano for real-time control. Lane line detection is achieved through conventional image processing techniques, providing the basis for local path generation, while traffic sign classification employs a… More > Graphic Abstract

    An Embedded Computer Vision Approach to Environment Modeling and Local Path Planning in Autonomous Mobile Robots

  • Open Access

    ARTICLE

    Novel Quantum-Integrated CNN Model for Improved Human Activity Recognition in Smart Surveillance

    Tanvir Fatima Naik Bukht1,2, Yanfeng Wu1, Nouf Abdullah Almujally3, Shuoa S. AItarbi4, Hameedur Rahman2, Ahmad Jalal2,5,*, Hui Liu1,6,7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4013-4036, 2025, DOI:10.32604/cmes.2025.071850 - 23 December 2025

    Abstract Human activity recognition (HAR) is crucial in fields like robotics, surveillance, and healthcare, enabling systems to understand and respond to human actions. Current models often struggle with complex datasets, making accurate recognition challenging. This study proposes a quantum-integrated Convolutional Neural Network (QI-CNN) to enhance HAR performance. The traditional models demonstrate weak performance in transferring learned knowledge between diverse complex data collections, including D3D-HOI and Sysu 3D HOI. HAR requires better extraction models and techniques that must address current challenges to achieve improved accuracy and scalability. The model aims to enhance HAR task performance by combining… More >

  • Open Access

    ARTICLE

    STPEIC: A Swin Transformer-Based Framework for Interpretable Post-Earthquake Structural Classification

    Xinrui Ma, Shizhi Chen*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1745-1767, 2025, DOI:10.32604/sdhm.2025.071148 - 17 November 2025

    Abstract The rapid and accurate assessment of structural damage following an earthquake is crucial for effective emergency response and post-disaster recovery. Traditional manual inspection methods are often slow, labor-intensive, and prone to human error. To address these challenges, this study proposes STPEIC (Swin Transformer-based Framework for Interpretable Post-Earthquake Structural Classification), an automated deep learning framework designed for analyzing post-earthquake images. STPEIC performs two key tasks: structural components classification and damage level classification. By leveraging the hierarchical attention mechanisms of the Swin Transformer (Shifted Window Transformer), the model achieves 85.4% accuracy in structural component classification and 85.1% More >

  • Open Access

    ARTICLE

    Leveraging Federated Learning for Efficient Privacy-Enhancing Violent Activity Recognition from Videos

    Moshiur Rahman Tonmoy1, Md. Mithun Hossain1, Mejdl Safran2,*, Sultan Alfarhood2, Dunren Che3, M. F. Mridha4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5747-5763, 2025, DOI:10.32604/cmc.2025.067589 - 23 October 2025

    Abstract Automated recognition of violent activities from videos is vital for public safety, but often raises significant privacy concerns due to the sensitive nature of the footage. Moreover, resource constraints often hinder the deployment of deep learning-based complex video classification models on edge devices. With this motivation, this study aims to investigate an effective violent activity classifier while minimizing computational complexity, attaining competitive performance, and mitigating user data privacy concerns. We present a lightweight deep learning architecture with fewer parameters for efficient violent activity recognition. We utilize a two-stream formation of 3D depthwise separable convolution coupled More >

  • Open Access

    ARTICLE

    Enhanced Fire Detection System for Blind and Visually Challenged People Using Artificial Intelligence with Deep Convolutional Neural Networks

    Fahd N. Al-Wesabi1,*, Hamad Almansour2, Huda G. Iskandar3,4, Ishfaq Yaseen5

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5765-5787, 2025, DOI:10.32604/cmc.2025.067571 - 23 October 2025

    Abstract Earlier notification and fire detection methods provide safety information and fire prevention to blind and visually impaired (BVI) individuals in a limited timeframe in the event of emergencies, particularly in enclosed areas. Fire detection becomes crucial as it directly impacts human safety and the environment. While modern technology requires precise techniques for early detection to prevent damage and loss, few research has focused on artificial intelligence (AI)-based early fire alert systems for BVI individuals in indoor settings. To prevent such fire incidents, it is crucial to identify fires accurately and promptly, and alert BVI personnel… More >

  • Open Access

    REVIEW

    Computer Modeling Approaches for Blockchain-Driven Supply Chain Intelligence: A Review on Enhancing Transparency, Security, and Efficiency

    Puranam Revanth Kumar1, Gouse Baig Mohammad2, Pallati Narsimhulu3, Dharnisha Narasappa4, Lakshmana Phaneendra Maguluri5, Subhav Singh6,7,8, Shitharth Selvarajan9,10,11,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2779-2818, 2025, DOI:10.32604/cmes.2025.066365 - 30 September 2025

    Abstract Blockchain Technology (BT) has emerged as a transformative solution for improving the efficacy, security, and transparency of supply chain intelligence. Traditional Supply Chain Management (SCM) systems frequently have problems such as data silos, a lack of visibility in real time, fraudulent activities, and inefficiencies in tracking and traceability. Blockchain’s decentralized and irreversible ledger offers a solid foundation for dealing with these issues; it facilitates trust, security, and the sharing of data in real-time among all parties involved. Through an examination of critical technologies, methodology, and applications, this paper delves deeply into computer modeling based-blockchain framework… More >

Displaying 1-10 on page 1 of 387. Per Page