Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Study on the Physical Properties of Banana Straw Based on the Discrete Element Method

    Sen Zhang1, Jie Jiang2,3,*, Yuedong Wang4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1159-1172, 2023, DOI:10.32604/fdmp.2022.024070

    Abstract To improve the application of discrete element models (DEM) to the design of agricultural crushers, in this study a new highly accurate model is elaborated. The model takes into account the fiber structure, porous nature of the material and the leaf sheath coating structure. Dedicated experimental tests are conducted to determine the required “intrinsic” and basic contact parameters of the considered banana straw materials. A large number of bonding parameters are examined in relation to the particle aggregation model in order to characterize different actual banana straws. Using the particle surface energy contact model, the viscosity characteristics of the crushed… More > Graphic Abstract

    A Study on the Physical Properties of Banana Straw Based on the Discrete Element Method

  • Open Access

    ARTICLE

    Stick-Slip-Slap Interface Response Simulation: Formulation and Application of a General Joint/Interface Element

    Yaxin Song1, D. Michael McFarland1, Lawrence A. Bergman1, Alexander F. Vakakis2

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.2, pp. 153-170, 2005, DOI:10.3970/cmes.2005.010.153

    Abstract A general interface element is developed for dynamic response analysis of structures with jointed interfaces, which can account for damping due to both impact and friction. Contact effects are included through a segment-to-segment contact model which considers the stick-slip-slap behavior at every point along the joint interface. A nonlinear friction law is adopted at the interface to describe microscopic relative motion due to the deformation of the asperities on the interface. Numerical examples demonstrate that the general joint interface element is capable of accounting for both friction and impact damping in jointed interfaces, as well as capturing the transfer of… More >

Displaying 1-10 on page 1 of 2. Per Page