Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Mild Cognitive Impairment Detection from Rey-Osterrieth Complex Figure Copy Drawings Using a Contrastive Loss Siamese Neural Network

    Juan Guerrero-Martín*, Eladio Estella-Nonay, Margarita Bachiller-Mayoral, Mariano Rincón

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4729-4752, 2025, DOI:10.32604/cmc.2025.066083 - 23 October 2025

    Abstract Neuropsychological tests, such as the Rey-Osterrieth complex figure (ROCF) test, help detect mild cognitive impairment (MCI) in adults by assessing cognitive abilities such as planning, organization, and memory. Furthermore, they are inexpensive and minimally invasive, making them excellent tools for early screening. In this paper, we propose the use of image analysis models to characterize the relationship between an individual’s ROCF drawing and their cognitive state. This task is usually framed as a classification problem and is solved using deep learning models, due to their success in the last decade. In order to achieve good… More >

  • Open Access

    ARTICLE

    Research on Improved MobileViT Image Tamper Localization Model

    Jingtao Sun1,2, Fengling Zhang1,2,*, Huanqi Liu1,2, Wenyan Hou1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3173-3192, 2024, DOI:10.32604/cmc.2024.051705 - 15 August 2024

    Abstract As image manipulation technology advances rapidly, the malicious use of image tampering has alarmingly escalated, posing a significant threat to social stability. In the realm of image tampering localization, accurately localizing limited samples, multiple types, and various sizes of regions remains a multitude of challenges. These issues impede the model’s universality and generalization capability and detrimentally affect its performance. To tackle these issues, we propose FL-MobileViT-an improved MobileViT model devised for image tampering localization. Our proposed model utilizes a dual-stream architecture that independently processes the RGB and noise domain, and captures richer traces of tampering… More >

  • Open Access

    ARTICLE

    A Novel Siamese Network for Few/Zero-Shot Handwritten Character Recognition Tasks

    Nagwa Elaraby*, Sherif Barakat, Amira Rezk

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1837-1854, 2023, DOI:10.32604/cmc.2023.032288 - 22 September 2022

    Abstract Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks. It depends on building a Siamese architecture of two homogeneous Convolutional Neural Networks (CNNs) for learning a distance function that can map input data from the input space to the feature space. Instead of determining the class of each sample, the Siamese architecture deals with the existence of a few training samples by deciding if the samples share the same class identity or not. The traditional structure for the Siamese architecture was built by forming two… More >

Displaying 1-10 on page 1 of 3. Per Page