Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    Coordinated Source–Network–Storage Inertia Control Strategy Based on Wind Power Transmission via MMC-HVDC System

    Mengxuan Shi1, Lintao Li2, Dejun Shao1, Xiaojie Pan1, Xingyu Shi2,*, Yuxun Wang2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069915 - 27 December 2025

    Abstract In wind power transmission via modular multilevel converter based high voltage direct current (MMC-HVDC) systems, under traditional control strategies, MMC-HVDC cannot provide inertia support to the receiving-end grid (REG) during disturbances. Moreover, due to the frequency decoupling between the two ends of the MMC-HVDC, the sending-end wind farm (SEWF) cannot obtain the frequency variation information of the REG to provide inertia response. Therefore, this paper proposes a novel coordinated source-network-storage inertia control strategy based on wind power transmission via MMC-HVDC system. First, the grid-side MMC station (GS-MMC) maps the frequency variations of the REG to… More >

  • Open Access

    ARTICLE

    Construction of MMC-CLCC Hybrid DC Transmission System and Its Power Flow Reversal Control Strategy

    Yechun Xin1, Xinyuan Zhao1, Dong Ding2, Shuyu Chen2, Chuanjie Wang2, Tuo Wang1,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069748 - 27 December 2025

    Abstract To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current (HVDC) links and multi-infeed DC systems in load-center regions, this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter (MMC-CLCC) HVDC transmission system and its corresponding control strategy. First, the system topology is constructed, and a submodule configuration method for the MMC—combining full-bridge submodules (FBSMs) and half-bridge submodules (HBSMs)—is proposed to enable direct power flow reversal. Second, a hierarchical control strategy is introduced, including MMC voltage control, CLCC current control, and a coordination mechanism, along with the derivation of… More >

  • Open Access

    ARTICLE

    A Coordinated Multi-Loop Control Strategy for Fault Ride-Through in Grid-Forming Converters

    Zhuang Liu#, Mingwei Ren, Kai Shi*, Peifeng Xu

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069480 - 27 December 2025

    Abstract Grid-Forming (GFM) converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags. To address this, this paper develops a multi-loop coordinated fault ride-through (FRT) control strategy based on a power outer loop and voltage-current inner loops, aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions. During voltage sags, the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support, thereby effectively suppressing the steady-state component of the fault current. To address the active power imbalance induced… More >

  • Open Access

    ARTICLE

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

    Jin Lin1,*, Bin Yu2, Chao Chen1, Jiezhen Cai1, Yifan Wu2, Cunping Wang3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069310 - 27 December 2025

    Abstract With the increasing integration of renewable energy, microgrids are increasingly facing stability challenges, primarily due to the lack of inherent inertia in inverter-dominated systems, which is traditionally provided by synchronous generators. To address this critical issue, Virtual Synchronous Generator (VSG) technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators. To enhance the operational efficiency of virtual synchronous generators (VSGs), this study employs small-signal modeling analysis, root locus methods, and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency… More > Graphic Abstract

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

  • Open Access

    ARTICLE

    Power Balance Control Strategy of Cascaded H-Bridge Multilevel Inverter Based on Improved Harmonic Injection

    Feng Zhao, Haonan Xu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.122, No.12, pp. 4987-5000, 2025, DOI:10.32604/ee.2025.068714 - 27 November 2025

    Abstract The cascaded H-bridge (CHB) multilevel inverter has become one of the most widely used PV inverter topologies due to its high voltage processing capability and high quality output power. Grid-connected PV system due to external conditions such as PV panel shading, PV component damage, can lead to PV output power imbalance, triggering the system over-modulation phenomenon, which in turn leads to grid-connected current waveform distortion. To this end, an improved power balance control strategy is proposed in this paper. Firstly, according to the different modulation ratios of each H-bridge module, a suitable harmonic injection method More >

  • Open Access

    ARTICLE

    Variable Integral Parameter Control Strategy for Secondary Frequency Regulation with Multiple Energy Storage Units

    Jinyu Guo*, Xingxu Zhu, Zezhong Liu, Cuiping Li

    Energy Engineering, Vol.122, No.10, pp. 3961-3983, 2025, DOI:10.32604/ee.2025.067811 - 30 September 2025

    Abstract In high-renewable-energy power systems, the demand for fast-responding capabilities is growing. To address the limitations of conventional closed-loop frequency control, where the integral coefficient cannot dynamically adjust the frequency regulation command based on the state of charge (SoC) of energy storage units, this paper proposes a secondary frequency regulation control strategy based on variable integral coefficients for multiple energy storage units. First, a power-uniform controller is designed to ensure that thermal power units gradually take on more regulation power during the frequency regulation process. Next, a control framework based on variable integral coefficients is proposed… More >

  • Open Access

    ARTICLE

    Load Balancing Control Strategy for Multi-Substation Flexible Interconnection Distribution Networks Considering Unbalanced Power Compensation

    Qiji Dai1, Jikai Li2,*, Bohui Ning1, Yutao Xu1, Chang Liu2, Xuan Zhang1

    Energy Engineering, Vol.122, No.10, pp. 4061-4080, 2025, DOI:10.32604/ee.2025.067304 - 30 September 2025

    Abstract Aiming at the challenge of complex load balancing coordination for a three-phase four-leg (3P4L) based multi-ended low voltage flexible DC distribution system (M-LVDC) considering unbalanced power compensation, this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC. Firstly, the topology and operation principle of the 3P4L-based M-LVDC system is introduced, and quasi-proportional resonant (QPR) based phase-split power current control for the 3P4L converter is proposed. Secondly, a load-balancing control strategy considering unbalanced compensation for 3P4L-based M-LVDC is presented, in which the control diagrams for each 3P4L-based converter… More >

  • Open Access

    ARTICLE

    Fuzzy Logic-Based Robust Global Consensus in Leader-Follower Robotic Systems under Sensor and Actuator Attacks Using Hybrid Control Strategy

    Asad Khan1, Fathia Moh. Al Samman2,*, Waqar Ul Hassan3, Mohammed M. A. Almazah4, A. Y. Al-Rezami5, Azmat Ullah Khan Niazi3,*, Adnan Manzor6

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1971-1999, 2025, DOI:10.32604/cmes.2025.068240 - 31 August 2025

    Abstract This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems, focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots. Each follower robot has unknown dynamics and control inputs, which expose it to the risks of both sensor and actuator attacks. The leader robot, described by a second-order, time-varying nonlinear model, transmits its position, velocity, and acceleration information to follower robots through a wireless connection. To handle the complex setup and communication among robots in the… More > Graphic Abstract

    Fuzzy Logic-Based Robust Global Consensus in Leader-Follower Robotic Systems under Sensor and Actuator Attacks Using Hybrid Control Strategy

  • Open Access

    ARTICLE

    Simulation Platform for the Optimal Configuration of Hybrid Energy Storage Assisting Thermal Power Units in Secondary Frequency Regulation

    Cuiping Li1, Ziyun Zong1, Xingxu Zhu1, Zheng Fang2, Caiqi Jia3, Wenbo Si4, Gangui Yan1, Junhui Li1,*

    Energy Engineering, Vol.122, No.9, pp. 3459-3485, 2025, DOI:10.32604/ee.2025.066629 - 26 August 2025

    Abstract In response to the issue of determining the appropriate capacity when hybrid energy storage systems (HESS) collaborate with thermal power units (TPU) in the system’s secondary frequency regulation, a configuration method for HESS based on the analysis of frequency regulation demand analysis is proposed. And a corresponding simulation platform is developed. Firstly, a frequency modulation demand method for reducing the frequency modulation losses of TPU is proposed. Secondly, taking into comprehensive consideration that flywheel energy storage features rapid power response and battery energy storage has the characteristic of high energy density, a coordinated control strategy… More > Graphic Abstract

    Simulation Platform for the Optimal Configuration of Hybrid Energy Storage Assisting Thermal Power Units in Secondary Frequency Regulation

  • Open Access

    ARTICLE

    An Equivalent Fuel Consumption Minimizing Strategy for Fuel Cell Ships Considering Power Degradation

    Diju Gao, Shuai Li*

    Energy Engineering, Vol.122, No.4, pp. 1425-1442, 2025, DOI:10.32604/ee.2025.062101 - 31 March 2025

    Abstract To safeguard the ocean ecosystem, fuel cells are excellent candidates as the primary energy supply for marine vessels due to their high efficiency, low noise, and cleanliness. However, fuel cells in hybrid power systems are highly susceptible to load transients, which can severely damage fuel cells and shorten their lifespan. Therefore, the formulation of energy management strategies accounting for power degradation is crucial and urgent. In this study, an improved strategy for equivalent consumption minimization strategy (ECMS) considering power degradation is proposed. The improved energy control strategy effectively controls the energy distribution of hydrogen fuel… More > Graphic Abstract

    An Equivalent Fuel Consumption Minimizing Strategy for Fuel Cell Ships Considering Power Degradation

Displaying 1-10 on page 1 of 53. Per Page