Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    An ADRC Parameters Self-Tuning Control Strategy of Tension System Based on RBF Neural Network

    Shanhui Liu1,*, Haodi Ding1, Ziyu Wang1, Li’e Ma1, Zheng Li2

    Journal of Renewable Materials, Vol.11, No.4, pp. 1991-2014, 2023, DOI:10.32604/jrm.2022.023659

    Abstract High precision control of substrate tension is the premise and guarantee for producing high-quality products in roll-to-roll precision coating machine. However, the complex relationships in tension system make the problems of decoupling control difficult to be solved, which has limited the improvement of tension control accuracy for the coating machine. Therefore, an ADRC parameters self-tuning decoupling strategy based on RBF neural network is proposed to improve the control accuracy of tension system in this paper. Firstly, a global coupling nonlinear model of the tension system is established according to the composition of the coating machine, and the global coupling model… More > Graphic Abstract

    An ADRC Parameters Self-Tuning Control Strategy of Tension System Based on RBF Neural Network

  • Open Access

    REVIEW

    A Review of Electromagnetic Energy Regenerative Suspension System & Key Technologies

    Changzhong Fu, Jiayu Lu*, Wenqing Ge, Cao Tan, Bo Li

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 1779-1824, 2023, DOI:10.32604/cmes.2022.023092

    Abstract The active suspension has undoubtedly improved the performance of the vehicle, however, the trend of “lowcarbonization, intelligence, and informationization” in the automotive industry has put forward higher and more urgent requirements for the suspension system. The automotive industry and researchers favor active energy regeneration suspension technology with safety, comfort, and high energy regenerative efficiency. In this paper, we review the research progress of the structure form, optimization method, and control strategy of electromagnetic energy regenerative suspension. Specifically, comparing the pros and cons of the existing technology in solving the contradiction between dynamic performance and energy regeneration. In addition, the development… More > Graphic Abstract

    A Review of Electromagnetic Energy Regenerative Suspension System & Key Technologies

  • Open Access

    ARTICLE

    Coordinated Rotor-Side Control Strategy for Doubly-Fed Wind Turbine under Symmetrical and Asymmetrical Grid Faults

    Quanchun Yan1,2,*, Chao Yuan1, Wen Gu1, Yanan Liu1, Yiming Tang1

    Energy Engineering, Vol.120, No.1, pp. 49-68, 2023, DOI:10.32604/ee.2022.018555

    Abstract In order to solve the problems of rotor overvoltage, overcurrent and DC side voltage rise caused by grid voltage drops, a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of rotor side converter of the doubly-fed generator is proposed. When the power grid voltage drops symmetrically, the generator approximate equation under steady-state conditions is no longer applicable. Considering the dynamic process of stator current excitation, according to the change of stator flux and the depth of voltage drop, the system can dynamically provide reactive power support for parallel nodes and suppress the rise of DC side… More >

  • Open Access

    ARTICLE

    Hierarchical and Distributed Optimal Control Strategy for Power and Power Quality of Microgrid Based on Finite-Time Consistency

    Wenjun Wei1,2, Hao Liang1,*

    Energy Engineering, Vol.119, No.5, pp. 2065-2080, 2022, DOI:10.32604/ee.2022.020002

    Abstract Droop control is one of the main control strategies of islanded microgrid (MG), but the droop control cannot achieve reasonable power distribution of microgrid, resulting in frequency and voltage deviation from the rating value, which needs the upper control link to eliminate the deviation. However, at present, most layered control requires a centralized control center, which excessively relies on microgrid central controller (MGCC) and real-time communication among distributed generation (DG), which has certain limitations. To solve the above problems, this paper proposes a hierarchical distributed power and power quality optimization strategy based on multi-agent finite time consistency algorithm (MA-FTCA). Firstly,… More >

  • Open Access

    ARTICLE

    Research on Distributed Cooperative Control Strategy of Microgrid Hybrid Energy Storage Based on Adaptive Event Triggering

    Wenqian Zhang1, Jingwen Chen1,*, Saleem Riaz3, Naiwen Zheng1, Li Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 585-604, 2022, DOI:10.32604/cmes.2022.020523

    Abstract Distributed collaborative control strategies for microgrids often use periodic time to trigger communication, which is likely to enhance the burden of communication and increase the frequency of controller updates, leading to greater waste of communication resources. In response to this problem, a distributed cooperative control strategy triggered by an adaptive event is proposed. By introducing an adaptive event triggering mechanism in the distributed controller, the triggering parameters are dynamically adjusted so that the distributed controller can communicate only at a certain time, the communication pressure is reduced, and the DC bus voltage deviation is effectively reduced, at the same time,… More >

  • Open Access

    ARTICLE

    An Advanced Control Strategy for Dual-Actuator Driving System in Full-Scale Fatigue Test of Wind Turbine Blades

    Guanhua Wang1, Jinghua Wang1, Xuemei Huang1,*, Leian Zhang1, Weisheng Liu2

    Energy Engineering, Vol.119, No.4, pp. 1649-1662, 2022, DOI:10.32604/ee.2022.019695

    Abstract A new dual-actuator fatigue loading system of wind turbine blades was designed. Compared with the traditional pendulum loading mode, the masses in this system only moved linearly along the loading direction to increase the exciting force. However, the two actuators and the blade constituted a complicated non-linear energy transferring system, which led to the non-synchronization of actuators. On-site test results showed that the virtual spindle synchronous strategy commonly used in synchronous control was undesirable and caused the instability of the blade’s amplitude eventually. A cross-coupled control strategy based on the active disturbance rejection algorithm was proposed. Firstly, a control system… More >

  • Open Access

    ARTICLE

    Kalman-Filtering-Based Frequency Control Strategy Considering Electrolytic Aluminum Load

    Yuqin Chen, Shihai Yang*, Yueping Kong, Mingming Chen

    Energy Engineering, Vol.119, No.4, pp. 1517-1529, 2022, DOI:10.32604/ee.2022.019646

    Abstract Traditional thermal power units are continuously replaced by renewable energies, of which fluctuations and intermittence impose pressure on the frequency stability of the power system. Electrolytic aluminum load (EAL) accounts for large amount of the local electric loads in some areas. The participation of EAL in local frequency control has huge application prospects. However, the controller design of EAL is difficult due to the measurement noise of the system frequency and the nonlinear dynamics of the EAL’s electric power consumption. Focusing on this problem, this paper proposes a control strategy for EAL to participate in the frequency control. For the… More >

  • Open Access

    ARTICLE

    Grid-Connected Control Strategy of VSG under Complex Grid Voltage Conditions

    Bin Zhang, Yanjun Jin*

    Energy Engineering, Vol.119, No.4, pp. 1467-1482, 2022, DOI:10.32604/ee.2022.018233

    Abstract Under complex grid conditions, the grid voltage usually has an imbalance, low order harmonics, and a small of DC bias. When the grid voltage contains low order harmonics and a small amount of DC bias component, the inverter's output current cannot meet the grid connection requirements, and there is a three-phase current imbalance in the control strategy of common VSG under unbalanced voltage. A theoretical analysis of non-ideal power grids is carried out, and a VSG control strategy under complex operating conditions is proposed. Firstly, the third-order generalized integrator (TOGI) is used to eliminate the influence of the DC component… More >

  • Open Access

    ARTICLE

    Adaptive Fuzzy Robust Tracking Control Using Human Electromyogram Signals for Elastic Joint Robots

    Mahdi Souzanchi-K1, Mohammad-R Akbarzadeh-T1,*, Nadia Naghavi1, Ali Sharifnezhad2, Vahab Khoshdel3

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 279-294, 2022, DOI:10.32604/iasc.2022.023717

    Abstract Sliding mode control is often used for systems with parametric uncertainties due to its desirable robustness and stability, but this approach carries undesirable chattering. Similarly, joint elasticity is a common phenomenon induced by transmission systems in robots, but it presents additional complexity in robot dynamics that could lead to robot vibrations or even instability. Coupling these two phenomena presents further compounded challenges, particularly when faced with the human interface's added uncertainties. Here, a stable voltage-based adaptive fuzzy strategy to sliding mode control is proposed for an elastic joint robot arm that uses a human's upper limb electromyogram (EMG) signals to… More >

  • Open Access

    ARTICLE

    A Genetic Algorithm for Optimizing Yaw Operation Control in Wind Power Plants

    Lisha Shang*, Yajuan Jia, Liming Zheng, Erna Shi, Min Sun

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 511-519, 2022, DOI:10.32604/fdmp.2022.017920

    Abstract A genetic algorithm is proposed to optimize the yaw control system used for the stable and efficient operation of turbines in wind power plants. In particular, the factors that produce yaw static deviation are analyzed. Then, the sought optimization method for the yaw static deviation of the wind turbine is implemented by using a lidar wind meter in the engine room in order to solve the low accuracy problem caused by yaw static deviation. It is shown that fuzzy control can overcome problematic factors such as the randomness of wind direction and track the change of wind direction accurately. Power… More >

Displaying 11-20 on page 2 of 34. Per Page