Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    ARTICLE

    Robust Control and Stabilization of Autonomous Vehicular Systems under Deception Attacks and Switching Signed Networks

    Muflih Alhazmi1, Waqar Ul Hassan2, Saba Shaheen3, Mohammed M. A. Almazah4, Azmat Ullah Khan Niazi3,*, Nafisa A. Albasheir5, Ameni Gargouri6, Naveed Iqbal7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1903-1940, 2025, DOI:10.32604/cmes.2025.072973 - 26 November 2025

    Abstract This paper proposes a model-based control framework for vehicle platooning systems with second-order nonlinear dynamics operating over switching signed networks, time-varying delays, and deception attacks. The study includes two configurations: a leaderless structure using Finite-Time Non-Singular Terminal Bipartite Consensus (FNTBC) and Fixed-Time Bipartite Consensus (FXTBC), and a leader—follower structure ensuring structural balance and robustness against deceptive signals. In the leaderless model, a bipartite controller based on impulsive control theory, gauge transformation, and Markovian switching Lyapunov functions ensures mean-square stability and coordination under deception attacks and communication delays. The FNTBC achieves finite-time convergence depending on initial More >

  • Open Access

    ARTICLE

    Energy Analysis of the Aircraft Environment Control System Using Air with and without Humidity

    J. E. López-Gil1, J. F. Ituna-Yudonago1,*, V. Pérez-García2, V. Martínez-Calzada3, J. L. Rodríguez-Muñoz4, J. Serrano-Arellano5

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1365-1393, 2025, DOI:10.32604/fhmt.2025.068100 - 31 October 2025

    Abstract This paper presents a thermophysical study approach for a pure environmental control system (ECS), incorporating the geometric dimensions of heat exchangers, ram air duct, and air cycle machine (ACM) blades of the Sabreliner’s environmental control system. Real flight scenarios are simulated by considering flight input variables such as altitude, aircraft speed, compression ratio of the air cycle machine, and the mass flow rate of bleed air. The study evaluates the coefficient of performance (COP) of the environmental control system, the heat exchanger efficiencies, and the work distribution of the air cycle machine based on five… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Health Assessment Method for Benzene-to-Ethylene Ratio Control Systems under Incomplete Data

    Huichao Cao1,*, Honghe Du1, Dongnian Jiang1, Wei Li1, Lei Du1, Jianfeng Yang2

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1305-1325, 2025, DOI:10.32604/sdhm.2025.066002 - 05 September 2025

    Abstract In the production processes of modern industry, accurate assessment of the system’s health state and traceability non-optimal factors are key to ensuring “safe, stable, long-term, full load and optimal” operation of the production process. The benzene-to-ethylene ratio control system is a complex system based on an MPC-PID double-layer architecture. Taking into consideration the interaction between levels, coupling between loops and conditions of incomplete operation data, this paper proposes a health assessment method for the dual-layer control system by comprehensively utilizing deep learning technology. Firstly, according to the results of the pre-assessment of the system layers… More >

  • Open Access

    ARTICLE

    Epidemiological Modeling of Pneumococcal Pneumonia: Insights from ABC Fractal-Fractional Derivatives

    Mohammed Althubyani1,*, Nidal E. Taha2, Khdija O. Taha2, Rasmiyah A. Alharb2, Sayed Saber1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3491-3521, 2025, DOI:10.32604/cmes.2025.061640 - 30 June 2025

    Abstract This study investigates the dynamics of pneumococcal pneumonia using a novel fractal-fractional Susceptible-Carrier-Infected-Recovered model formulated with the Atangana-Baleanu in Caputo (ABC) sense. Unlike traditional epidemiological models that rely on classical or Caputo fractional derivatives, the proposed model incorporates nonlocal memory effects, hereditary properties, and complex transmission dynamics through fractal-fractional calculus. The Atangana-Baleanu operator, with its non-singular Mittag-Leffler kernel, ensures a more realistic representation of disease progression compared to classical integer-order models and singular kernel-based fractional models. The study establishes the existence and uniqueness of the proposed system and conducts a comprehensive stability analysis, including local More >

  • Open Access

    REVIEW

    Collision-Free Satellite Constellations: A Comprehensive Review on Autonomous and Collaborative Algorithms

    Ghulam E Mustafa Abro1,*, Altaf Mugheri2,#, Zain Anwar Ali3,#

    Revue Internationale de Géomatique, Vol.34, pp. 301-331, 2025, DOI:10.32604/rig.2025.065595 - 05 June 2025

    Abstract Swarm intelligence, derived from the collective behaviour of biological entities, is a novel methodology for overseeing satellite constellations within decentralized control systems. Conventional centralized control systems in satellite constellations encounter constraints in scalability, resilience, and fault tolerance, particularly in extensive constellations. This research examines the use of swarm-based multi-agent systems and distributed algorithms for efficient communication, collision avoidance, and collaborative task execution in satellite constellations. We provide a comprehensive study of current swarm control algorithms, their relevance to satellite systems, and identify areas requiring further research. Principal subjects encompass decentralized decision-making, self-organization, adaptive communication protocols, More >

  • Open Access

    ARTICLE

    Design of Chaos Induced Aquila Optimizer for Parameter Estimation of Electro-Hydraulic Control System

    Khizer Mehmood1, Naveed Ishtiaq Chaudhary2,*, Zeshan Aslam Khan3, Khalid Mehmood Cheema4, Muhammad Asif Zahoor Raja2, Sultan S. Alshamrani5, Kaled M. Alshmrany6

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1809-1841, 2025, DOI:10.32604/cmes.2025.064900 - 30 May 2025

    Abstract Aquila Optimizer (AO) is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey. AO is applied in various applications and its numerous variants were proposed in the literature. However, chaos theory has not been extensively investigated in AO. Moreover, it is still not applied in the parameter estimation of electro-hydraulic systems. In this work, ten well-defined chaotic maps were integrated into a narrowed exploitation of AO for the development of a robust chaotic optimization technique. An extensive investigation of twenty-three mathematical benchmarks and ten IEEE Congress on Evolutionary Computation (CEC) functions… More >

  • Open Access

    ARTICLE

    Enhanced Practical Byzantine Fault Tolerance for Service Function Chain Deployment: Advancing Big Data Intelligence in Control Systems

    Peiying Zhang1,2,*, Yihong Yu1,2, Jing Liu3, Chong Lv1,2, Lizhuang Tan4,5, Yulin Zhang6,7,8

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4393-4409, 2025, DOI:10.32604/cmc.2025.064654 - 19 May 2025

    Abstract As Internet of Things (IoT) technologies continue to evolve at an unprecedented pace, intelligent big data control and information systems have become critical enablers for organizational digital transformation, facilitating data-driven decision making, fostering innovation ecosystems, and maintaining operational stability. In this study, we propose an advanced deployment algorithm for Service Function Chaining (SFC) that leverages an enhanced Practical Byzantine Fault Tolerance (PBFT) mechanism. The main goal is to tackle the issues of security and resource efficiency in SFC implementation across diverse network settings. By integrating blockchain technology and Deep Reinforcement Learning (DRL), our algorithm not… More >

  • Open Access

    ARTICLE

    A Hierarchical Security Situation Assessment Approach for Train Control System under Cyber Attacks

    Qichang Li1,2,*, Bing Bu1, Junyi Zhao1

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4281-4313, 2025, DOI:10.32604/cmc.2025.061525 - 19 May 2025

    Abstract With the integration of informatization and intelligence into the Communication-Based Train Control (CBTC) systems, the system is facing an increasing number of information security threats. As an important method of characterizing the system security status, the security situation assessment is used to analyze the system security situation. However, existing situation assessment methods fail to integrate the coupling relationship between the physical layer and the information layer of the CBTC systems, and cannot dynamically characterize the real-time security situation changes under cyber attacks. In this paper, a hierarchical security situation assessment approach is proposed to address… More >

  • Open Access

    ARTICLE

    Innovative Mechanical Ventilation Control for Enhanced Indoor Air Quality and Energy Efficiency

    Giovanni Miracco1,*, Francesco Nicoletti1, Vittorio Ferraro2, Dimitrios Kaliakatsos1

    Energy Engineering, Vol.122, No.3, pp. 861-883, 2025, DOI:10.32604/ee.2025.060750 - 07 March 2025

    Abstract Indoor air quality (IAQ) is often overlooked, yet a poorly maintained environment can lead to significant health issues and reduced concentration and productivity in work or educational settings. This study presents an innovative control system for mechanical ventilation specifically designed for university classrooms, with the dual goal of enhancing IAQ and increasing energy efficiency. Two classrooms with distinct construction characteristics were analyzed: one with exterior walls and windows, and the other completely underground. For each classroom, a model was developed using DesignBuilder software, which was calibrated with experimental data regarding CO₂ concentration, temperature, and relative… More >

  • Open Access

    ARTICLE

    Towards Net Zero Resilience: A Futuristic Architectural Strategy for Cyber-Attack Defence in Industrial Control Systems (ICS) and Operational Technology (OT)

    Hariharan Ramachandran1,*, Richard Smith2, Kenny Awuson David1,*, Tawfik Al-Hadhrami3, Parag Acharya1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3619-3641, 2025, DOI:10.32604/cmc.2024.054802 - 17 February 2025

    Abstract This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios… More >

Displaying 1-10 on page 1 of 69. Per Page