Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (328)
  • Open Access

    ARTICLE

    Convection Correlations at High Re Numbers for Cavities of Cylindrical Roller Bearings

    S. Guenoun1, A. Baïri1, N. Laraqi1,2, J.M. García de María3, J.G. Bauzin1, A. Hocine1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.2, pp. 197-214, 2012, DOI:10.3970/fdmp.2012.008.197

    Abstract Roller bearings are used in mechanical setups to reduce rubbing. In some applications, the thermal dissipation involved mostly due to friction between rollers and rings is important. Correct operation of the roller is possible only if local thermal phenomena are controlled. In this work, the resulting dynamical and thermal fields within the enclosures limited by rollers and rings in cylindrical bearings are obtained through numerical modelling. Convective heat transfer is quantified by Nu-Re-Pr correlations for various dynamical and thermal configurations of the bearing. Two specific shape factors of the cavity and common fluids of engineering interest are considered, including air,… More >

  • Open Access

    ARTICLE

    Numerical and Analytical Analysis of the Thermosolutal Convection in an Heterogeneous Porous Cavity

    K. Choukairy1, R. Bennacer2

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.2, pp. 155-172, 2012, DOI:10.3970/fdmp.2012.008.155

    Abstract This study carries the natural thermosolutal convection induced in heterogeneous porous media. The configuration considered is cartesian. The horizontal and vertical walls are submitted to different mass and heat transfer. The equations which govern this type of flow are solved numerically by using the finite volume method. The flow is considered two-dimensional and laminar. The model of Darcy and the approximation of the Boussinesq are taken into account. The parameters which control the problem are the thermal Darcy-Rayleigh number, Rt, the buoyancy ratio, N, the Lewis number, Le, the aspect ratio of the enclosure, A and the local permeability ratio,… More >

  • Open Access

    ARTICLE

    Numerical Study of Double Diffusive Convection in presence of Radiating Gas in a Square Cavity

    F. Moufekkir1, M.A. Moussaoui1, A. Mezrhab1,2, H. Naji3,4, M. Bouzidi5

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.2, pp. 129-154, 2012, DOI:10.3970/fdmp.2012.008.129

    Abstract The problem related to coupled double diffusive convection in a square enclosure filled with a gray gas in the presence of volumetric radiation is examined numerically. The horizontal walls are assumed to be insulated and impermeable. Different temperatures and species concentrations are imposed at vertical walls. In particular, we propose a 2-D numerical approach based on a hybrid scheme combining a multiple-relaxation-time lattice Boltzmann model (MRT-LBM) and a standard finite difference method (FDM). The radiative term in the energy equation is treated using the discrete ordinates method (DOM) with a S8 quadrature. The influence of various parameters (such as the… More >

  • Open Access

    ARTICLE

    Heat Exchange between Film Condensation and Porous Natural Convection across a Vertical Wall

    Rashed Al-Ajmi1, Mohamed Mosaad1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.1, pp. 51-68, 2012, DOI:10.3970/fdmp.2011.008.051

    Abstract Conjugate heat transfer across a vertical solid wall separating natural convection in a cold fluid-saturated porous medium and film condensation in a saturated-vapour medium is analyzed. The analysis reveals that this thermal interaction process is mainly controlled by the thermal resistance ratio of wall to porous-side natural convection and that of condensate film to natural convection. Asymptotic and numerical results of interest are obtained for the local and mean overall Nusselt number as functions of these two thermal resistance ratios. More >

  • Open Access

    ARTICLE

    Two Dimensional Numerical Simulation of Mixed Convection in a Rectangular Open Enclosure

    Md. Tofiqul Islam1, Sumon Saha2, Md. Arif Hasan Mamun3, Mohammad Ali4

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.2, pp. 125-138, 2008, DOI:10.3970/fdmp.2008.004.125

    Abstract A numerical study has been performed on mixed convection inside an open cavity on the bottom of a channel. One of the three walls of the cavity experiences a uniform heat flux while the other walls and the top of the channel are adiabatic. Three different cases are considered by applying uniform heat flux on (a) the inflow side (assisting forced flow); (b) the outflow side (opposing forced flow); (c) the bottom horizontal surface (transverse flow). The Galerkin weighted residual method of finite element formulation is used to discretize the governing equations. For mixed convection, the influential parameters are the… More >

  • Open Access

    ARTICLE

    Axially Running Wave in Liquid Bridge

    D.E. Melnikov1, V.M. Shevtsova2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.4, pp. 329-338, 2007, DOI:10.3970/fdmp.2007.003.329

    Abstract Thermocapillary convection in a long vertical liquid column (called liquid bridge) subjected to heating from above is considered for a three-dimensional Boussinesq fluid. The problem is solved numerically via finite-volume method. Full system of three dimensional Navier-Stokes equations coupled with the energy equation is solved for an incompressible fluid. Instability sets in through a wave propagating in axial direction with zero azimuthal wave number, which is a unique stable solution over a wide range of supercritical heating. Further increasing the applied temperature difference results in bifurcation of a second wave traveling azimuthally with a slightly higher frequency. The two waves… More >

  • Open Access

    ARTICLE

    Interface Deformation and Convective Transport in Horizontal Differentially Heated Air-Oil Layers

    Srikrishna Sahu1, K. Muralidhar1, P.K. Panigrahi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 265-286, 2007, DOI:10.3970/fdmp.2007.003.265

    Abstract Convection in a differentially heated cavity partly filled with silicone oil has been experimentally studied. The air-oil layers are subjected to a temperature difference in the vertical direction, with the lower wall being heated with respect to the top. The overall geometry is that of an enclosed cavity that is octagonal in plan. Heights of oil layers considered for experiments correspond to 30, 50, and 70% of the vertical cavity dimension. Measurements have been carried out using a shadowgraph technique. A limited number of interferograms have also been recorded. The shadowgraph technique has been validated against interferograms under identical experimental… More >

  • Open Access

    ARTICLE

    A Unified Theory for Interphase Transport Phenomena with Interfacial Velocity and Surface Tension Gradients: Applications to Single Crystal Growth and Microgravity Sciences

    Akira Hirata1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 203-230, 2007, DOI:10.3970/fdmp.2007.003.203

    Abstract This article is a summary of author's typical research works (over the last four decades) on interphase transport phenomena in the presence of interfacial fluid motion and surface tension gradients on liquid-fluid interfaces, and related applications to single crystal growth and microgravity sciences. A unified theory for momentum, heat and mass transfer on liquid-fluid and solid-fluid interfaces is proposed, which takes into account interface mobility. It is shown that interface contamination and turbulence can be well explained, respectively, by suppression and enhancement of the interfacial velocity induced by surface tension gradients. Transport phenomena on solid spheres, liquid drops and gas… More >

  • Open Access

    ARTICLE

    Recent Developments in Oscillatory Marangoni Convection

    Y. Kamotani1, S. Matsumoto2, S. Yoda2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.2, pp. 147-160, 2007, DOI:10.3970/fdmp.2007.003.147

    Abstract A Marangoni Convection Modeling Research group was formed in Japan in order to investigate oscillatory thermocapillary flow systematically over a wide range of Prandtl number (Pr). The research by the group represents the current status of the subject. The present article reports the work done by the group members. The work is divided into three Pr ranges (low, medium and high) because the cause of oscillations is different in each range. For the low-Pr case, the transition to oscillatory flow is preceded by a steady bifurcation to three-dimensional convection. For the first time an experimental proof of this first transition… More >

  • Open Access

    ARTICLE

    Numerical Study of Low Frequency G-jitter Effect on Thermal Diffusion

    Y. Yan1, V. Shevtsova2, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.4, pp. 315-328, 2005, DOI:10.3970/fdmp.2005.001.315

    Abstract Convection has a major impact on diffusion in fluid mixtures either on the Earth or in the microgravity condition. G-jitters, as the primary source that induces the vibrational convection in space laboratories, should be studied thoroughly in order to improve the diffusion-dominated fluid science experiments. In this paper we consider the effect of g-jitters on thermal diffusion. The mixture water-isopropanol (90:10 wt%) bounded in a cubic cell is simulated with a lateral heating and various vibration conditions. The fluid flow, concentration and temperature distributions are thoroughly analyzed for different g-jitter scenarios. It is shown that the overall effect of vibrations… More >

Displaying 311-320 on page 32 of 328. Per Page