Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    CFD MODELING OF NATURAL CONVECTION HEAT TRANSFER OF TIO2-WATER NANOFLUID IN A CYLINDRICAL CONTAINER

    Seyed Milad Mirabedin*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.17

    Abstract This work focuses on numerical validation of natural convection heat transfer of TiO2-water nanofluids in a cylindrical container using COMSOL. The main aim of this study is to examine different available approaches to calculate effective thermal conductivity and compare them with experimental data available in the literature. Simulation results show that for considered mixture, average Nusselt number decreases by increasing Rayleigh number and particle volume fraction. It has been found that only one model was able to represent similar trends for given particle volume fractions, compared to experimental results. More >

  • Open Access

    ARTICLE

    MODELING OF FREE CONVECTION HEAT TRANSFER UTILIZING NANOFLUID INSIDE A WAVY ENCLOSURE WITH A PAIR OF HOT AND COLD CYLINDERS

    Zoubair Boulahia* , Abderrahim Wakif, Rachid Sehaqui

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.14

    Abstract In the present work, natural convection heat transfer of Cu-water nanofluid inside a wavy wall enclosure is investigated numerically by using the finite volume discretization method. The study examines the effect of the nanoparticle volume fraction, the Rayleigh number, the wave amplitude, and the undulations number on the heat transfer rate. The results show that the heat transfer rate inside the wavy enclosure enhances by decreasing the wavy surface amplitude and increasing undulations number. It is also found that by increasing the volume fraction of nanoparticles and Rayleigh number, the heat transfer rate increases. More >

  • Open Access

    ARTICLE

    CORRELATION FOR TURBULENT CONVECTION HEAT TRANSFER IN ELLIPTICAL TUBES BY NUMERICAL SIMULATIONS

    Mo Yanga,*, Xiaoming Wanga, Zhiyun Wanga, Zheng Lib , Yuwen Zhangb

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-6, 2018, DOI:10.5098/hmt.11.7

    Abstract Turbulent convective heat transfer in an elliptical pipe are investigated numerically in this paper. The RSM model is employed in the simulations of elliptical tubes with different aspect ratio a/b and Reynolds numbers within the range of 10,000~120,000. It is found that the maximum deviation between the numerical result and the one from Dittus-Boelter equation contained a hydraulic diameter is 28.4%. Based on simulation results, the correlation between the Nusselt number and Reynolds number in the fully developed fluid section of the elliptical tube is obtained. More >

  • Open Access

    ARTICLE

    Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler

    Tiezhu Sun*, Huan Sun, Tingzheng Tang, Yongcheng Yan, Peixuan Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2519-2531, 2023, DOI:10.32604/fdmp.2023.027118

    Abstract The so-called indirect evaporative cooling technology is widely used in air conditioning applications. The thermal characterization of tube-type indirect evaporative coolers, however, still presents challenges which need to be addressed to make this technology more reliable and easy to implement. This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter. In particular, the required tests were carried out considering a range of dry-bulb temperatures between 16°C and 18°C and a temperature difference between the wet-bulb and dry-bulb temperature of 2°C∼4°C. The integrated convective heat transfer coefficient inside the… More > Graphic Abstract

    Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler

  • Open Access

    ARTICLE

    An Investigation into the Influence of the Airflow Path on the Convective Heat Transfer for an Eddy Current Retarder Turntable

    Yunfei Liao1,*, Jin Liu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 961-977, 2020, DOI:10.32604/fdmp.2020.09163

    Abstract In order to improve the convective heat transfer relating to an eddy current retarder, the finite element model has been used to assess the performances of different possible designs. In particular, assuming the steady running state of retarder as the working condition, flow and temperature fields have been obtained for the rotor. The influence of airflow path on heat dissipation has been analysed, and the influence of the temperature field distribution on the performance of retarder has been discussed accordingly. The results show that when the steady running state of the turntable is considered, the maximum temperature is lower, the… More >

  • Open Access

    ARTICLE

    A New Idea of Fractal-Fractional Derivative with Power Law Kernel for Free Convection Heat Transfer in a Channel Flow between Two Static Upright Parallel Plates

    Dolat Khan1, Gohar Ali1, Arshad Khan2, Ilyas Khan3, *, Yu-Ming Chu4, 5, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1237-1251, 2020, DOI:10.32604/cmc.2020.011492

    Abstract Nowadays some new ideas of fractional derivatives have been used successfully in the present research community to study different types of mathematical models. Amongst them, the significant models of fluids and heat or mass transfer are on priority. Most recently a new idea of fractal-fractional derivative is introduced; however, it is not used for heat transfer in channel flow. In this article, we have studied this new idea of fractal fractional operators with power-law kernel for heat transfer in a fluid flow problem. More exactly, we have considered the free convection heat transfer for a Newtonian fluid. The flow is… More >

  • Open Access

    ARTICLE

    MLPG Application of Nanofluid Flow Mixed Convection Heat Transfer in a Wavy Wall Cavity

    A. Arefmanesh1, M. Najafi2, M. Nikfar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.2, pp. 91-118, 2010, DOI:10.3970/cmes.2010.069.091

    Abstract Procuring a numerical solution through an application of the meshless local Petrov-Galerkin method (MLPG) on the fluid flow and mixed convection in a complex geometry cavity filled with a nanofluid is the scope of the present study. The cavity considered is a square enclosure having a lower temperature sliding lid at the top, a differentially higher temperature wavy wall at the bottom, and two thermally insulated walls on the sides. The nanofluid medium used is a water-based nanofluid, Al2O3-water with various volume fractions of its solid. To carry out the numerical simulations, the developed governing equations are determined in terms… More >

  • Open Access

    ARTICLE

    Optimal Formulation of Nanofluids for Maximum Free Convection Heat Transfer from Horizontal Isothermal Cylinders

    Massimo Corcione1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 175-200, 2011, DOI:10.3970/fdmp.2011.007.175

    Abstract Free convection heat transfer in nanofluids from horizontal isothermal cylinders is investigated theoretically. The main idea upon which the present work is based is that nanofluids behave more like a single-phase fluid rather than like a conventional solid-liquid mixture. This assumption implies that all the convective heat transfer correlations available in the literature for single-phase flows can be extended to nanoparticle suspensions, provided that the thermophysical properties appearing in them are the nanofluid effective properties calculated at the reference temperature. In this connection, two empirical equations, based on a wide variety of experimental data reported in the literature, are proposed… More >

Displaying 1-10 on page 1 of 8. Per Page