Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (116)
  • Open Access

    ARTICLE

    Machine-Learning Based Packet Switching Method for Providing Stable High-Quality Video Streaming in Multi-Stream Transmission

    Yumin Jo1, Jongho Paik2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4153-4176, 2024, DOI:10.32604/cmc.2024.047046

    Abstract Broadcasting gateway equipment generally uses a method of simply switching to a spare input stream when a failure occurs in a main input stream. However, when the transmission environment is unstable, problems such as reduction in the lifespan of equipment due to frequent switching and interruption, delay, and stoppage of services may occur. Therefore, applying a machine learning (ML) method, which is possible to automatically judge and classify network-related service anomaly, and switch multi-input signals without dropping or changing signals by predicting or quickly determining the time of error occurrence for smooth stream switching when there are problems such as… More >

  • Open Access

    ARTICLE

    A Hybrid SIR-Fuzzy Model for Epidemic Dynamics: A Numerical Study

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3417-3434, 2024, DOI:10.32604/cmes.2024.046944

    Abstract This study focuses on the urgent requirement for improved accuracy in disease modeling by introducing a new computational framework called the Hybrid SIR-Fuzzy Model. By integrating the traditional Susceptible-Infectious-Recovered (SIR) model with fuzzy logic, our method effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters. The main aim of this research is to provide a model for disease transmission using fuzzy theory, which can successfully address uncertainty in mathematical modeling. Our main emphasis is on the imprecise transmission rate parameter, utilizing a three-part description of its membership level.… More >

  • Open Access

    ARTICLE

    An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem

    Zhaolin Lv1, Yuexia Zhao2, Hongyue Kang3,*, Zhenyu Gao3, Yuhang Qin4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2337-2360, 2024, DOI:10.32604/cmc.2023.045826

    Abstract Flexible job shop scheduling problem (FJSP) is the core decision-making problem of intelligent manufacturing production management. The Harris hawk optimization (HHO) algorithm, as a typical metaheuristic algorithm, has been widely employed to solve scheduling problems. However, HHO suffers from premature convergence when solving NP-hard problems. Therefore, this paper proposes an improved HHO algorithm (GNHHO) to solve the FJSP. GNHHO introduces an elitism strategy, a chaotic mechanism, a nonlinear escaping energy update strategy, and a Gaussian random walk strategy to prevent premature convergence. A flexible job shop scheduling model is constructed, and the static and dynamic FJSP is investigated to minimize… More >

  • Open Access

    ARTICLE

    A Nonstandard Computational Investigation of SEIR Model with Fuzzy Transmission, Recovery and Death Rates

    Ahmed H. Msmali1, Fazal Dayan2,*, Muhammad Rafiq3, Nauman Ahmed4, Abdullah Ali H. Ahmadini1, Hassan A. Hamali5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2251-2269, 2023, DOI:10.32604/cmc.2023.040266

    Abstract In this article, a Susceptible-Exposed-Infectious-Recovered (SEIR) epidemic model is considered. The equilibrium analysis and reproduction number are studied. The conventional models have made assumptions of homogeneity in disease transmission that contradict the actual reality. However, it is crucial to consider the heterogeneity of the transmission rate when modeling disease dynamics. Describing the heterogeneity of disease transmission mathematically can be achieved by incorporating fuzzy theory. A numerical scheme nonstandard, finite difference (NSFD) approach is developed for the studied model and the results of numerical simulations are presented. Simulations of the constructed scheme are presented. The positivity, convergence and consistency of the… More >

  • Open Access

    ARTICLE

    Notes on Convergence and Modeling for the Extended Kalman Filter

    Dah-Jing Jwo*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2137-2155, 2023, DOI:10.32604/cmc.2023.034308

    Abstract The goal of this work is to provide an understanding of estimation technology for both linear and nonlinear dynamical systems. A critical analysis of both the Kalman filter (KF) and the extended Kalman filter (EKF) will be provided, along with examples to illustrate some important issues related to filtering convergence due to system modeling. A conceptual explanation of the topic with illustrative examples provided in the paper can help the readers capture the essential principles and avoid making mistakes while implementing the algorithms. Adding fictitious process noise to the system model assumed by the filter designers for convergence assurance is… More >

  • Open Access

    ARTICLE

    Adaptive Multi-Updating Strategy Based Particle Swarm Optimization

    Dongping Tian1,*, Bingchun Li1, Jing Liu1, Chen Liu1, Ling Yuan1, Zhongzhi Shi2

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2783-2807, 2023, DOI:10.32604/iasc.2023.039531

    Abstract Particle swarm optimization (PSO) is a stochastic computation technique that has become an increasingly important branch of swarm intelligence optimization. However, like other evolutionary algorithms, PSO also suffers from premature convergence and entrapment into local optima in dealing with complex multimodal problems. Thus this paper puts forward an adaptive multi-updating strategy based particle swarm optimization (abbreviated as AMS-PSO). To start with, the chaotic sequence is employed to generate high-quality initial particles to accelerate the convergence rate of the AMS-PSO. Subsequently, according to the current iteration, different update schemes are used to regulate the particle search process at different evolution stages.… More >

  • Open Access

    PROCEEDINGS

    Efficient Multigrid Method Based on Adaptive Weighted Jacobi in Isogeometric Analysis

    ShiJie Luo1, Feng Yang1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09474

    Abstract The isogeometric analysis Method (IGA) is an efficient and accurate engineering analysis method. However, in order to obtain accurate analysis results, the grid must be refined, and the increase of the number of refinements will lead to large-scale equations, which will increase the computational cost. Compared with the traditional equation solvers such as preconditioned conjugate gradient method (PCG), generalized minimal residual (GMRES), the advantage of multigrid method is that the convergence rate is independent of grid scale when solving large-scale equations. This paper presents an adaptive weighted Jacobi method to improve the convergence of geometric multigrid method to efficiently solve… More >

  • Open Access

    ARTICLE

    Research on Narrowband Line Spectrum Noise Control Method Based on Nearest Neighbor Filter and BP Neural Network Feedback Mechanism

    Shuiping Zhang1,2, Xi Liang3, Lin Shi2, Lei Yan4, Jun Tang1,2,*

    Sound & Vibration, Vol.57, pp. 29-44, 2023, DOI:10.32604/sv.2023.041350

    Abstract The filter-x least mean square (FxLMS) algorithm is widely used in active noise control (ANC) systems. However, because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to update the filter coefficients, it has a certain delay, usually has a slow convergence speed, and the system response time is long and easily affected by the learning rate leading to the lack of system stability, which often fails to achieve the desired control effect in practice. In this paper, we propose an active control algorithm with nearest-neighbor trap structure and neural network feedback mechanism… More > Graphic Abstract

    Research on Narrowband Line Spectrum Noise Control Method Based on Nearest Neighbor Filter and BP Neural Network Feedback Mechanism

  • Open Access

    ARTICLE

    Intermediary RRT*-PSO: A Multi-Directional Hybrid Fast Convergence Sampling-Based Path Planning Algorithm

    Loc Q. Huynh1, Ly V. Tran1, Phuc N. K. Phan1, Zhiqiu Yu2, Son V. T. Dao1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2281-2300, 2023, DOI:10.32604/cmc.2023.034872

    Abstract Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles. In this paper, we propose a novel path planning algorithm–Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer, Particle swarm optimization (PSO), for fine-tuning and enhancement. In Phase 1, the start and goal trees are initialized at the starting and goal positions, respectively, and the intermediary tree is initialized at a random unexplored region of the search space. The… More >

  • Open Access

    PROCEEDINGS

    Three-Dimensional Numerical Simulation of Large-Scale LandslideGenerated Surging Waves with a GPU‒Accelerated Soil‒Water Coupled SPH Model

    Can Huang1,*, Xiaoliang Wang1, Qingquan Liu1, Huaning Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09824

    Abstract Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslidegenerated water waves, is simulated to validate this… More >

Displaying 1-10 on page 1 of 116. Per Page