Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (111)
  • Open Access

    ARTICLE

    Adaptive Multi-Updating Strategy Based Particle Swarm Optimization

    Dongping Tian1,*, Bingchun Li1, Jing Liu1, Chen Liu1, Ling Yuan1, Zhongzhi Shi2

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2783-2807, 2023, DOI:10.32604/iasc.2023.039531

    Abstract Particle swarm optimization (PSO) is a stochastic computation technique that has become an increasingly important branch of swarm intelligence optimization. However, like other evolutionary algorithms, PSO also suffers from premature convergence and entrapment into local optima in dealing with complex multimodal problems. Thus this paper puts forward an adaptive multi-updating strategy based particle swarm optimization (abbreviated as AMS-PSO). To start with, the chaotic sequence is employed to generate high-quality initial particles to accelerate the convergence rate of the AMS-PSO. Subsequently, according to the current iteration, different update schemes are used to regulate the particle search process at different evolution stages.… More >

  • Open Access

    PROCEEDINGS

    Efficient Multigrid Method Based on Adaptive Weighted Jacobi in Isogeometric Analysis

    ShiJie Luo1, Feng Yang1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09474

    Abstract The isogeometric analysis Method (IGA) is an efficient and accurate engineering analysis method. However, in order to obtain accurate analysis results, the grid must be refined, and the increase of the number of refinements will lead to large-scale equations, which will increase the computational cost. Compared with the traditional equation solvers such as preconditioned conjugate gradient method (PCG), generalized minimal residual (GMRES), the advantage of multigrid method is that the convergence rate is independent of grid scale when solving large-scale equations. This paper presents an adaptive weighted Jacobi method to improve the convergence of geometric multigrid method to efficiently solve… More >

  • Open Access

    ARTICLE

    Research on Narrowband Line Spectrum Noise Control Method Based on Nearest Neighbor Filter and BP Neural Network Feedback Mechanism

    Shuiping Zhang1,2, Xi Liang3, Lin Shi2, Lei Yan4, Jun Tang1,2,*

    Sound & Vibration, Vol.57, pp. 29-44, 2023, DOI:10.32604/sv.2023.041350

    Abstract The filter-x least mean square (FxLMS) algorithm is widely used in active noise control (ANC) systems. However, because the algorithm is a feedback control algorithm based on the minimization of the error signal variance to update the filter coefficients, it has a certain delay, usually has a slow convergence speed, and the system response time is long and easily affected by the learning rate leading to the lack of system stability, which often fails to achieve the desired control effect in practice. In this paper, we propose an active control algorithm with nearest-neighbor trap structure and neural network feedback mechanism… More > Graphic Abstract

    Research on Narrowband Line Spectrum Noise Control Method Based on Nearest Neighbor Filter and BP Neural Network Feedback Mechanism

  • Open Access

    ARTICLE

    Intermediary RRT*-PSO: A Multi-Directional Hybrid Fast Convergence Sampling-Based Path Planning Algorithm

    Loc Q. Huynh1, Ly V. Tran1, Phuc N. K. Phan1, Zhiqiu Yu2, Son V. T. Dao1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2281-2300, 2023, DOI:10.32604/cmc.2023.034872

    Abstract Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles. In this paper, we propose a novel path planning algorithm–Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer, Particle swarm optimization (PSO), for fine-tuning and enhancement. In Phase 1, the start and goal trees are initialized at the starting and goal positions, respectively, and the intermediary tree is initialized at a random unexplored region of the search space. The… More >

  • Open Access

    PROCEEDINGS

    Three-Dimensional Numerical Simulation of Large-Scale LandslideGenerated Surging Waves with a GPU‒Accelerated Soil‒Water Coupled SPH Model

    Can Huang1,*, Xiaoliang Wang1, Qingquan Liu1, Huaning Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09824

    Abstract Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslidegenerated water waves, is simulated to validate this… More >

  • Open Access

    ARTICLE

    Research on Asymmetric Fault Location of Wind Farm Collection System Based on Compressed Sensing

    Huanan Yu1, Gang Han1,*, Hansong Luo2, He Wang1

    Energy Engineering, Vol.120, No.9, pp. 2029-2057, 2023, DOI:10.32604/ee.2023.028365

    Abstract Aiming at the problem that most of the cables in the power collection system of offshore wind farms are buried deep in the seabed, which makes it difficult to detect faults, this paper proposes a two-step fault location method based on compressed sensing and ranging equation. The first step is to determine the fault zone through compressed sensing, and improve the data measurement, dictionary design and algorithm reconstruction: Firstly, the phase-locked loop trigonometric function method is used to suppress the spike phenomenon when extracting the fault voltage, so that the extracted voltage value will not have a large error due… More >

  • Open Access

    ARTICLE

    Reactive Power Flow Convergence Adjustment Based on Deep Reinforcement Learning

    Wei Zhang1, Bin Ji2, Ping He1, Nanqin Wang1, Yuwei Wang1, Mengzhe Zhang2,*

    Energy Engineering, Vol.120, No.9, pp. 2177-2192, 2023, DOI:10.32604/ee.2023.026504

    Abstract Power flow calculation is the basis of power grid planning and many system analysis tasks require convergent power flow conditions. To address the unsolvable power flow problem caused by the reactive power imbalance, a method for adjusting reactive power flow convergence based on deep reinforcement learning is proposed. The deep reinforcement learning method takes switching parallel reactive compensation as the action space and sets the reward value based on the power flow convergence and reactive power adjustment. For the non-convergence power flow, the 500 kV nodes with reactive power compensation devices on the low-voltage side are converted into PV nodes… More >

  • Open Access

    ARTICLE

    Computational Analysis for Computer Network Model with Fuzziness

    Wafa F. Alfwzan1, Dumitru Baleanu2,3,4, Fazal Dayan5,*, Sami Ullah5, Nauman Ahmed4,6, Muhammad Rafiq7,8, Ali Raza4,9

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1909-1924, 2023, DOI:10.32604/iasc.2023.039249

    Abstract A susceptible, exposed, infectious, quarantined and recovered (SEIQR) model with fuzzy parameters is studied in this work. Fuzziness in the model arises due to the different degrees of susceptibility, exposure, infectivity, quarantine and recovery among the computers under consideration due to the different sizes, models, spare parts, the surrounding environments of these PCs and many other factors like the resistance capacity of the individual PC against the virus, etc. Each individual PC has a different degree of infectivity and resistance against infection. In this scenario, the fuzzy model has richer dynamics than its classical counterpart in epidemiology. The reproduction number… More >

  • Open Access

    ARTICLE

    Atrous Convolution-Based Residual Deep CNN for Image Dehazing with Spider Monkey–Particle Swarm Optimization

    CH. Mohan Sai Kumar*, R. S. Valarmathi

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1711-1728, 2023, DOI:10.32604/iasc.2023.038113

    Abstract Image dehazing is a rapidly progressing research concept to enhance image contrast and resolution in computer vision applications. Owing to severe air dispersion, fog, and haze over the environment, hazy images pose specific challenges during information retrieval. With the advances in the learning theory, most of the learning-based techniques, in particular, deep neural networks are used for single-image dehazing. The existing approaches are extremely computationally complex, and the dehazed images are suffered from color distortion caused by the over-saturation and pseudo-shadow phenomenon. However, the slow convergence rate during training and haze residual is the two demerits in the conventional image… More >

  • Open Access

    ARTICLE

    A Whale Optimization Algorithm with Distributed Collaboration and Reverse Learning Ability

    Zhedong Xu*, Yongbo Su, Fang Yang, Ming Zhang

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5965-5986, 2023, DOI:10.32604/cmc.2023.037611

    Abstract Due to the development of digital transformation, intelligent algorithms are getting more and more attention. The whale optimization algorithm (WOA) is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems. However, with the increased dimensions, higher requirements are put forward for algorithm performance. The double population whale optimization algorithm with distributed collaboration and reverse learning ability (DCRWOA) is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems. In the DCRWOA algorithm, the novel double population search strategy is constructed. Meanwhile, the reverse learning strategy… More >

Displaying 1-10 on page 1 of 111. Per Page