Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Efficient Multigrid Method Based on Adaptive Weighted Jacobi in Isogeometric Analysis

    ShiJie Luo1, Feng Yang1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09474

    Abstract The isogeometric analysis Method (IGA) is an efficient and accurate engineering analysis method. However, in order to obtain accurate analysis results, the grid must be refined, and the increase of the number of refinements will lead to large-scale equations, which will increase the computational cost. Compared with the traditional equation solvers such as preconditioned conjugate gradient method (PCG), generalized minimal residual (GMRES), the advantage of multigrid method is that the convergence rate is independent of grid scale when solving large-scale equations. This paper presents an adaptive weighted Jacobi method to improve the convergence of geometric… More >

  • Open Access


    Nonlinear Problems via a Convergence Accelerated Decomposition Method of Adomian

    Mustafa Turkyilmazoglu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 1-22, 2021, DOI:10.32604/cmes.2021.012595

    Abstract The present paper is devoted to the convergence control and accelerating the traditional Decomposition Method of Adomian (ADM). By means of perturbing the initial or early terms of the Adomian iterates by adding a parameterized term, containing an embedded parameter, new modified ADM is constructed. The optimal value of this parameter is later determined via squared residual minimizing the error. The failure of the classical ADM is also prevented by a suitable value of the embedded parameter, particularly beneficial for the Duan–Rach modification of the ADM incorporating all the boundaries into the formulation. With the More >

Displaying 1-10 on page 1 of 2. Per Page