Pengfei Wang1,2,3, Jiwu Sun2, Lu Lu1,4, Hongchen Li1, Hongzhe Liu2, Cheng Xu2, Yongqiang Liu1,*
CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2883-2903, 2025, DOI:10.32604/cmc.2025.065267
- 03 July 2025
Abstract Flooding and heavy rainfall under extreme weather conditions pose significant challenges to target detection algorithms. Traditional methods often struggle to address issues such as image blurring, dynamic noise interference, and variations in target scale. Conventional neural network (CNN)-based target detection approaches face notable limitations in such adverse weather scenarios, primarily due to the fixed geometric sampling structures that hinder adaptability to complex backgrounds and dynamically changing object appearances. To address these challenges, this paper proposes an optimized YOLOv9 model incorporating an improved deformable convolutional network (DCN) enhanced with a multi-scale dilated attention (MSDA) mechanism. Specifically,… More >