Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (435)
  • Open Access

    ARTICLE

    Hybrid Model for Short-Term Passenger Flow Prediction in Rail Transit

    Yinghua Song1,2, Hairong Lyu1,2, Wei Zhang1,2,*

    Journal on Big Data, Vol.5, pp. 19-40, 2023, DOI:10.32604/jbd.2023.038249

    Abstract A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation, assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation. First, the passenger flow sequence models in the study are broken down using VMD for noise reduction. The objective environment features are then added to the characteristic factors that affect the passenger flow. The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm. It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy, by setting… More >

  • Open Access

    ARTICLE

    A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images

    Huanhua Liu, Wei Wang*, Hanyu Liu, Shuheng Yi, Yonghao Yu, Xunwen Yao

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 459-472, 2024, DOI:10.32604/cmes.2023.029084

    Abstract Deep Convolutional Neural Networks (CNNs) have achieved high accuracy in image classification tasks, however, most existing models are trained on high-quality images that are not subject to image degradation. In practice, images are often affected by various types of degradation which can significantly impact the performance of CNNs. In this work, we investigate the influence of image degradation on three typical image classification CNNs and propose a Degradation Type Adaptive Image Classification Model (DTA-ICM) to improve the existing CNNs’ classification accuracy on degraded images. The proposed DTA-ICM comprises two key components: a Degradation Type Predictor (DTP) and a Degradation Type… More >

  • Open Access

    ARTICLE

    Detection of a Quasiperiodic Phenomenon of a Binary Star System Using Convolutional Neural Network

    Denis Benka*, Sabína Vašová, Michal Kebísek, Maximilián Strémy

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2519-2535, 2023, DOI:10.32604/iasc.2023.040799

    Abstract Pattern recognition algorithms are commonly utilized to discover certain patterns, particularly in image-based data. Our study focuses on quasiperiodic oscillations (QPO) in celestial objects referred to as cataclysmic variables (CV). We are dealing with interestingly indistinct QPO signals, which we analyze using a power density spectrum (PDS). The confidence in detecting the latter using certain statistical approaches may come out with less significance than the truth. We work with real and simulated QPO data of a CV called MV Lyrae. Our primary statistical tool for determining confidence levels is sigma intervals. The aforementioned CV has scientifically proven QPO existence, but… More >

  • Open Access

    ARTICLE

    Aspect-Based Sentiment Classification Using Deep Learning and Hybrid of Word Embedding and Contextual Position

    Waqas Ahmad1, Hikmat Ullah Khan1,2,*, Fawaz Khaled Alarfaj3,*, Saqib Iqbal4, Abdullah Mohammad Alomair3, Naif Almusallam3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3101-3124, 2023, DOI:10.32604/iasc.2023.040614

    Abstract Aspect-based sentiment analysis aims to detect and classify the sentiment polarities as negative, positive, or neutral while associating them with their identified aspects from the corresponding context. In this regard, prior methodologies widely utilize either word embedding or tree-based representations. Meanwhile, the separate use of those deep features such as word embedding and tree-based dependencies has become a significant cause of information loss. Generally, word embedding preserves the syntactic and semantic relations between a couple of terms lying in a sentence. Besides, the tree-based structure conserves the grammatical and logical dependencies of context. In addition, the sentence-oriented word position describes… More >

  • Open Access

    ARTICLE

    A Novel Attack on Complex APUFs Using the Evolutionary Deep Convolutional Neural Network

    Ali Ahmadi Shahrakht1, Parisa Hajirahimi2, Omid Rostami3, Diego Martín4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3059-3081, 2023, DOI:10.32604/iasc.2023.040502

    Abstract As the internet of things (IoT) continues to expand rapidly, the significance of its security concerns has grown in recent years. To address these concerns, physical unclonable functions (PUFs) have emerged as valuable tools for enhancing IoT security. PUFs leverage the inherent randomness found in the embedded hardware of IoT devices. However, it has been shown that some PUFs can be modeled by attackers using machine-learning-based approaches. In this paper, a new deep learning (DL)-based modeling attack is introduced to break the resistance of complex XAPUFs. Because training DL models is a problem that falls under the category of NP-hard… More >

  • Open Access

    EDITORIAL

    Grad-CAM: Understanding AI Models

    Shuihua Wang1,2, Yudong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1321-1324, 2023, DOI:10.32604/cmc.2023.041419

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    CNN-Based RF Fingerprinting Method for Securing Passive Keyless Entry and Start System

    Hyeon Park1, SeoYeon Kim2, Seok Min Ko1, TaeGuen Kim2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1891-1909, 2023, DOI:10.32604/cmc.2023.039464

    Abstract The rapid growth of modern vehicles with advanced technologies requires strong security to ensure customer safety. One key system that needs protection is the passive key entry system (PKES). To prevent attacks aimed at defeating the PKES, we propose a novel radio frequency (RF) fingerprinting method. Our method extracts the cepstral coefficient feature as a fingerprint of a radio frequency signal. This feature is then analyzed using a convolutional neural network (CNN) for device identification. In evaluation, we conducted experiments to determine the effectiveness of different cepstral coefficient features and the convolutional neural network-based model. Our experimental results revealed that… More >

  • Open Access

    ARTICLE

    An Efficient Cyber Security and Intrusion Detection System Using CRSR with PXORP-ECC and LTH-CNN

    Nouf Saeed Alotaibi*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2061-2078, 2023, DOI:10.32604/cmc.2023.039446

    Abstract Intrusion Detection System (IDS) is a network security mechanism that analyses all users’ and applications’ traffic and detects malicious activities in real-time. The existing IDS methods suffer from lower accuracy and lack the required level of security to prevent sophisticated attacks. This problem can result in the system being vulnerable to attacks, which can lead to the loss of sensitive data and potential system failure. Therefore, this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification (LTH-CNN). Here, the Correlation Coefficient based Mayfly Optimization (CC-MA) algorithm is used to extract the input characteristics for the IDS… More >

  • Open Access

    ARTICLE

    Hyper-Tuned Convolutional Neural Networks for Authorship Verification in Digital Forensic Investigations

    Asif Rahim1, Yanru Zhong2, Tariq Ahmad3,*, Sadique Ahmad4,*, Mohammed A. ElAffendi4

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1947-1976, 2023, DOI:10.32604/cmc.2023.039340

    Abstract Authorship verification is a crucial task in digital forensic investigations, where it is often necessary to determine whether a specific individual wrote a particular piece of text. Convolutional Neural Networks (CNNs) have shown promise in solving this problem, but their performance highly depends on the choice of hyperparameters. In this paper, we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification. We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms: Adaptive Moment Estimation (ADAM), Stochastic Gradient Descent (SGD), and Root Mean Squared Propagation (RMSPROP). The model is trained and… More >

  • Open Access

    ARTICLE

    Multiple Data Augmentation Strategy for Enhancing the Performance of YOLOv7 Object Detection Algorithm

    Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Journal on Artificial Intelligence, Vol.5, pp. 15-30, 2023, DOI:10.32604/jai.2023.041341

    Abstract The object detection technique depends on various methods for duplicating the dataset without adding more images. Data augmentation is a popular method that assists deep neural networks in achieving better generalization performance and can be seen as a type of implicit regularization. This method is recommended in the case where the amount of high-quality data is limited, and gaining new examples is costly and time-consuming. In this paper, we trained YOLOv7 with a dataset that is part of the Open Images dataset that has 8,600 images with four classes (Car, Bus, Motorcycle, and Person). We used five different data augmentations… More >

Displaying 1-10 on page 1 of 435. Per Page