Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (562)
  • Open Access

    ARTICLE

    Image Copy-Move Forgery Detection and Localization Method Based on Sequence-to-Sequence Transformer Structure

    Gang Hao, Peng Liang*, Ziyuan Li, Huimin Zhao, Hong Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5221-5238, 2025, DOI:10.32604/cmc.2025.055739 - 06 March 2025

    Abstract In recent years, the detection of image copy-move forgery (CMFD) has become a critical challenge in verifying the authenticity of digital images, particularly as image manipulation techniques evolve rapidly. While deep convolutional neural networks (DCNNs) have been widely employed for CMFD tasks, they are often hindered by a notable limitation: the progressive reduction in spatial resolution during the encoding process, which leads to the loss of critical image details. These details are essential for the accurate detection and localization of image copy-move forgery. To overcome the limitations of existing methods, this paper proposes a Transformer-based… More >

  • Open Access

    ARTICLE

    SGP-GCN: A Spatial-Geological Perception Graph Convolutional Neural Network for Long-Term Petroleum Production Forecasting

    Xin Liu1,*, Meng Sun1, Bo Lin2, Shibo Gu1

    Energy Engineering, Vol.122, No.3, pp. 1053-1072, 2025, DOI:10.32604/ee.2025.060489 - 07 March 2025

    Abstract Long-term petroleum production forecasting is essential for the effective development and management of oilfields. Due to its ability to extract complex patterns, deep learning has gained popularity for production forecasting. However, existing deep learning models frequently overlook the selective utilization of information from other production wells, resulting in suboptimal performance in long-term production forecasting across multiple wells. To achieve accurate long-term petroleum production forecast, we propose a spatial-geological perception graph convolutional neural network (SGP-GCN) that accounts for the temporal, spatial, and geological dependencies inherent in petroleum production. Utilizing the attention mechanism, the SGP-GCN effectively captures… More >

  • Open Access

    ARTICLE

    Improved Leaf Chlorophyll Content Estimation with Deep Learning and Feature Optimization Using Hyperspectral Measurements

    Xianfeng Zhou1,2,*, Ruiju Sun1, Zhaojie Zhang1, Yuanyuan Song1, Lijiao Jin1, Lin Yuan3

    Phyton-International Journal of Experimental Botany, Vol.94, No.2, pp. 503-519, 2025, DOI:10.32604/phyton.2025.060827 - 06 March 2025

    Abstract An accurate and robust estimation of leaf chlorophyll content (LCC) is very important to better know the process of material and energy exchange between plants and the environment. Compared with traditional remote sensing methods, abundant research has made progress in agronomic parameter retrieval using different CNN frameworks. Nevertheless, limited reports have paid attention to the problems, i.e., limited measured data, hyperspectral redundancy, and model convergence issues, when concerning CNN models for parameter estimation. Therefore, the present study tried to analyze the effects of synthetic data size expansion employing a Gaussian process regression (GPR) model for… More >

  • Open Access

    ARTICLE

    Semantic Malware Classification Using Artificial Intelligence Techniques

    Eliel Martins1, Javier Bermejo Higuera2,*, Ricardo Sant’Ana1, Juan Ramón Bermejo Higuera2, Juan Antonio Sicilia Montalvo2, Diego Piedrahita Castillo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3031-3067, 2025, DOI:10.32604/cmes.2025.061080 - 03 March 2025

    Abstract The growing threat of malware, particularly in the Portable Executable (PE) format, demands more effective methods for detection and classification. Machine learning-based approaches exhibit their potential but often neglect semantic segmentation of malware files that can improve classification performance. This research applies deep learning to malware detection, using Convolutional Neural Network (CNN) architectures adapted to work with semantically extracted data to classify malware into malware families. Starting from the Malconv model, this study introduces modifications to adapt it to multi-classification tasks and improve its performance. It proposes a new innovative method that focuses on byte More >

  • Open Access

    ARTICLE

    ParMamba: A Parallel Architecture Using CNN and Mamba for Brain Tumor Classification

    Gaoshuai Su1,2, Hongyang Li1,*, Huafeng Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2527-2545, 2025, DOI:10.32604/cmes.2025.059452 - 03 March 2025

    Abstract Brain tumors, one of the most lethal diseases with low survival rates, require early detection and accurate diagnosis to enable effective treatment planning. While deep learning architectures, particularly Convolutional Neural Networks (CNNs), have shown significant performance improvements over traditional methods, they struggle to capture the subtle pathological variations between different brain tumor types. Recent attention-based models have attempted to address this by focusing on global features, but they come with high computational costs. To address these challenges, this paper introduces a novel parallel architecture, ParMamba, which uniquely integrates Convolutional Attention Patch Embedding (CAPE) and the… More >

  • Open Access

    ARTICLE

    Optimized Convolutional Neural Networks with Multi-Scale Pyramid Feature Integration for Efficient Traffic Light Detection in Intelligent Transportation Systems

    Yahia Said1,2,*, Yahya Alassaf3, Refka Ghodhbani4, Taoufik Saidani4, Olfa Ben Rhaiem5

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3005-3018, 2025, DOI:10.32604/cmc.2025.060928 - 17 February 2025

    Abstract Transportation systems are experiencing a significant transformation due to the integration of advanced technologies, including artificial intelligence and machine learning. In the context of intelligent transportation systems (ITS) and Advanced Driver Assistance Systems (ADAS), the development of efficient and reliable traffic light detection mechanisms is crucial for enhancing road safety and traffic management. This paper presents an optimized convolutional neural network (CNN) framework designed to detect traffic lights in real-time within complex urban environments. Leveraging multi-scale pyramid feature maps, the proposed model addresses key challenges such as the detection of small, occluded, and low-resolution traffic… More >

  • Open Access

    ARTICLE

    Exploratory Research on Defense against Natural Adversarial Examples in Image Classification

    Yaoxuan Zhu, Hua Yang, Bin Zhu*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1947-1968, 2025, DOI:10.32604/cmc.2024.057866 - 17 February 2025

    Abstract The emergence of adversarial examples has revealed the inadequacies in the robustness of image classification models based on Convolutional Neural Networks (CNNs). Particularly in recent years, the discovery of natural adversarial examples has posed significant challenges, as traditional defense methods against adversarial attacks have proven to be largely ineffective against these natural adversarial examples. This paper explores defenses against these natural adversarial examples from three perspectives: adversarial examples, model architecture, and dataset. First, it employs Class Activation Mapping (CAM) to visualize how models classify natural adversarial examples, identifying several typical attack patterns. Next, various common… More >

  • Open Access

    ARTICLE

    Two-Phase Software Fault Localization Based on Relational Graph Convolutional Neural Networks

    Xin Fan1,2, Zhenlei Fu1,2,*, Jian Shu1,2, Zuxiong Shen1,2, Yun Ge1,2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2583-2607, 2025, DOI:10.32604/cmc.2024.057695 - 17 February 2025

    Abstract Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of… More >

  • Open Access

    ARTICLE

    A Modified Deep Residual-Convolutional Neural Network for Accurate Imputation of Missing Data

    Firdaus Firdaus, Siti Nurmaini*, Anggun Islami, Annisa Darmawahyuni, Ade Iriani Sapitri, Muhammad Naufal Rachmatullah, Bambang Tutuko, Akhiar Wista Arum, Muhammad Irfan Karim, Yultrien Yultrien, Ramadhana Noor Salassa Wandya

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3419-3441, 2025, DOI:10.32604/cmc.2024.055906 - 17 February 2025

    Abstract Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attention, challenges remain, especially when dealing with diverse data types. In this study, we introduce a novel data imputation method based on a modified convolutional neural network, specifically, a Deep Residual-Convolutional Neural Network (DRes-CNN) architecture designed to handle missing values across various datasets. Our approach demonstrates substantial improvements over existing imputation techniques by leveraging residual connections and optimized convolutional layers to capture complex data patterns. We evaluated… More >

  • Open Access

    REVIEW

    Deep Learning and Artificial Intelligence-Driven Advanced Methods for Acute Lymphoblastic Leukemia Identification and Classification: A Systematic Review

    Syed Ijaz Ur Rahman1, Naveed Abbas1, Sikandar Ali2, Muhammad Salman1, Ahmed Alkhayat3, Jawad Khan4,*, Dildar Hussain5, Yeong Hyeon Gu5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1199-1231, 2025, DOI:10.32604/cmes.2025.057462 - 27 January 2025

    Abstract Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system. Analysis of white blood cells (WBCs) in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts. For Acute Lymphocytic Leukemia (ALL), the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse. The researchers have done a lot of work in this field, to demonstrate… More >

Displaying 11-20 on page 2 of 562. Per Page