Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (484)
  • Open Access

    ARTICLE

    Deep Learning for Distinguishing Computer Generated Images and Natural Images: A Survey

    Bingtao Hu*, Jinwei Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 95-105, 2020, DOI:10.32604/jihpp.2020.010464

    Abstract With the development of computer graphics, realistic computer graphics (CG) have become more and more common in our field of vision. This rendered image is invisible to the naked eye. How to effectively identify CG and natural images (NI) has been become a new issue in the field of digital forensics. In recent years, a series of deep learning network frameworks have shown great advantages in the field of images, which provides a good choice for us to solve this problem. This paper aims to track the latest developments and applications of deep learning in the field of CG and… More >

  • Open Access

    ARTICLE

    Image Retrieval Based on Deep Feature Extraction and Reduction with Improved CNN and PCA

    Rongyu Chen, Lili Pan*, Yan Zhou, Qianhui Lei

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 67-76, 2020, DOI:10.32604/jihpp.2020.010472

    Abstract With the rapid development of information technology, the speed and efficiency of image retrieval are increasingly required in many fields, and a compelling image retrieval method is critical for the development of information. Feature extraction based on deep learning has become dominant in image retrieval due to their discrimination more complete, information more complementary and higher precision. However, the high-dimension deep features extracted by CNNs (convolutional neural networks) limits the retrieval efficiency and makes it difficult to satisfy the requirements of existing image retrieval. To solving this problem, the high-dimension feature reduction technology is proposed with improved CNN and PCA… More >

  • Open Access

    ARTICLE

    Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks

    H. M. Rehan Afzal1,2,*, Suhuai Luo1, Saadallah Ramadan1,2, Jeannette Lechner-Scott1,2,3, Mohammad Ruhul Amin3, Jiaming Li4, M. Kamran Afzal5

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 977-991, 2021, DOI:10.32604/cmc.2020.012448

    Abstract The diagnosis of multiple sclerosis (MS) is based on accurate detection of lesions on magnetic resonance imaging (MRI) which also provides ongoing essential information about the progression and status of the disease. Manual detection of lesions is very time consuming and lacks accuracy. Most of the lesions are difficult to detect manually, especially within the grey matter. This paper proposes a novel and fully automated convolution neural network (CNN) approach to segment lesions. The proposed system consists of two 2D patchwise CNNs which can segment lesions more accurately and robustly. The first CNN network is implemented to segment lesions accurately,… More >

  • Open Access

    ARTICLE

    A Convolutional Neural Network Classifier VGG-19 Architecture for Lesion Detection and Grading in Diabetic Retinopathy Based on Deep Learning

    V. Sudha1,*, T. R. Ganeshbabu2

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 827-842, 2021, DOI:10.32604/cmc.2020.012008

    Abstract Diabetic Retinopathy (DR) is a type of disease in eyes as a result of a diabetic condition that ends up damaging the retina, leading to blindness or loss of vision. Morphological and physiological retinal variations involving slowdown of blood flow in the retina, elevation of leukocyte cohesion, basement membrane dystrophy, and decline of pericyte cells, develop. As DR in its initial stage has no symptoms, early detection and automated diagnosis can prevent further visual damage. In this research, using a Deep Neural Network (DNN), segmentation methods are proposed to detect the retinal defects such as exudates, hemorrhages, microaneurysms from digital… More >

  • Open Access

    ARTICLE

    Resampling Factor Estimation via Dual-Stream Convolutional Neural Network

    Shangjun Luo1, Junwei Luo1, Wei Lu1,*, Yanmei Fang1, Jinhua Zeng2, Shaopei Shi2, Yue Zhang3,4

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 647-657, 2021, DOI:10.32604/cmc.2020.012869

    Abstract The estimation of image resampling factors is an important problem in image forensics. Among all the resampling factor estimation methods, spectrumbased methods are one of the most widely used methods and have attracted a lot of research interest. However, because of inherent ambiguity, spectrum-based methods fail to discriminate upscale and downscale operations without any prior information. In general, the application of resampling leaves detectable traces in both spatial domain and frequency domain of a resampled image. Firstly, the resampling process will introduce correlations between neighboring pixels. In this case, a set of periodic pixels that are correlated to their neighbors… More >

  • Open Access

    ARTICLE

    Deep Feature Extraction and Feature Fusion for Bi-Temporal Satellite Image Classification

    Anju Asokan1, J. Anitha1, Bogdan Patrut2, Dana Danciulescu3, D. Jude Hemanth1,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 373-388, 2021, DOI:10.32604/cmc.2020.012364

    Abstract Multispectral images contain a large amount of spatial and spectral data which are effective in identifying change areas. Deep feature extraction is important for multispectral image classification and is evolving as an interesting research area in change detection. However, many deep learning framework based approaches do not consider both spatial and textural details into account. In order to handle this issue, a Convolutional Neural Network (CNN) based multi-feature extraction and fusion is introduced which considers both spatial and textural features. This method uses CNN to extract the spatio-spectral features from individual channels and fuse them with the textural features. Then… More >

  • Open Access

    ARTICLE

    Straw Segmentation Algorithm Based on Modified UNet in Complex Farmland Environment

    Yuanyuan Liu1,2, Shuo Zhang1, Haiye Yu3, Yueyong Wang4,*, Yuehan Feng1, Jiahui Sun1, Xiaokang Zhou1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 247-262, 2021, DOI:10.32604/cmc.2020.012328

    Abstract Intelligent straw coverage detection plays an important role in agricultural production and the ecological environment. Traditional pattern recognition has some problems, such as low precision and a long processing time, when segmenting complex farmland, which cannot meet the conditions of embedded equipment deployment. Based on these problems, we proposed a novel deep learning model with high accuracy, small model size and fast running speed named Residual Unet with Attention mechanism using depthwise convolution (RADw–UNet). This algorithm is based on the UNet symmetric codec model. All the feature extraction modules of the network adopt the residual structure, and the whole network… More >

  • Open Access

    ARTICLE

    A Novel Forgery Detection in Image Frames of the Videos Using Enhanced Convolutional Neural Network in Face Images

    S. Velliangiri1,*, J. Premalatha2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 625-645, 2020, DOI:10.32604/cmes.2020.010869

    Abstract Different devices in the recent era generated a vast amount of digital video. Generally, it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice. Many kinds of researches on forensic detection have been presented, and it provides less accuracy. This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network (CNN). In the initial stage, the input video is taken as of the dataset and then converts the videos into image frames. Next, perform pre-sampling using the… More >

  • Open Access

    ARTICLE

    The Instance-Aware Automatic Image Colorization Based on Deep Convolutional Neural Network

    Hui Li1, Wei Zeng1,*, Guorong Xiao2, Huabin Wang1

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 841-846, 2020, DOI:10.32604/iasc.2020.010118

    Abstract Recent progress on image colorization is substantial and benefiting mostly from the great development of the deep convolutional neural networks. However, one type of object can be colored by different kinds of colors. Due to the uncertain relationship between the object and color, the deep neural network is unstable and difficult to converge during the training process. In order to solve this problem, this paper proposes an instance-aware automatic image colorization algorithm, which uses the semantic features of the object instance as prior knowledge to guide the deep neural network to do the colorization task. Meanwhile, we design a discrete… More >

  • Open Access

    ARTICLE

    PDNet: A Convolutional Neural Network Has Potential to be Deployed on Small Intelligent Devices for Arrhythmia Diagnosis

    Fei Yang1,2,#, Xiaoqing Zhang1,*,#, Yong Zhu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 365-382, 2020, DOI:10.32604/cmes.2020.010798

    Abstract Heart arrhythmia is a group of irregular heartbeat conditions and is usually detected by electrocardiograms (ECG) signals. Over the past years, deep learning methods have been developed to classify different types of heart arrhythmias through ECG based on computer-aided diagnosis systems (CADs), but these deep learning methods usually cannot trade-off between classification performance and parameters of deep learning methods. To tackle this problem, this work proposes a convolutional neural network (CNN) model named PDNet to recognize different types of heart arrhythmias efficiently. In the PDNet, a convolutional block named PDblock is devised, which is comprised of a pointwise convolutional layer… More >

Displaying 431-440 on page 44 of 484. Per Page