Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    Crack-Path Analysis for Brittle and Non-Brittle Cracks: A Cell Method Approach

    E. Ferretti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 227-244, 2004, DOI:10.3970/cmes.2004.006.227

    Abstract Defining the crack path in brittle and non-brittle crack is not easy, due to several unknowns. If the direction of crack propagation can be computed by means of one of the existing criteria, it is not known whether this direction will remain constant during crack propagation. A crack initiation leads to an enhanced stress field at crack tip. During propagation, the enhanced tip stress field propagates into the solid, locally interacting with the pre-existing stress field. This interaction can lead to modifications of the propagation direction, depending on the domain and crack geometry. Moreover, trajectory deviation affects the length of… More >

  • Open Access

    ARTICLE

    SGBEM-FEM Alternating Method for Analyzing 3D Non-planar Cracks and Their Growth in Structural Components1

    G.P.Nikishkov2, J.H.Park3, S.N.Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.3, pp. 401-422, 2001, DOI:10.3970/cmes.2001.002.401

    Abstract An efficient and highly accurate, Symmetric Galerkin Boundary Element Method - Finite Element Method - based alternating method, for the analysis of three-dimensional non-planar cracks, and their growth, in structural components of complicated geometries, is proposed. The crack is modeled by the symmetric Galerkin boundary element method, as a distribution of displacement discontinuities, as if in an infinite medium. The finite element method is used to perform the stress analysis for the uncracked body only. The solution for the structural component, containing the crack, is obtained in an iteration procedure, which alternates between FEM solution for the uncracked body, and… More >

  • Open Access

    ARTICLE

    Peridynamic Simulation of Electromigration

    Walter Gerstle1, Stewart Silling2, David Read3, Vinod Tewary4, Richard Lehoucq5

    CMC-Computers, Materials & Continua, Vol.8, No.2, pp. 75-92, 2008, DOI:10.3970/cmc.2008.008.075

    Abstract A theoretical framework, based upon the peridynamic model, is presented for analytical and computational simulation of electromigration. The framework allows four coupled physical processes to be modeled simultaneously: mechanical deformation, heat transfer, electrical potential distribution, and vacancy diffusion. The dynamics of void and crack formation, and hillock and whisker growth can potentially be modeled. The framework can potentially be applied at several modeling scales: atomistic, crystallite, multiple crystallite, and macro. The conceptual simplicity of the model promises to permit many phenomena observed in microchips, including electromigration, thermo-mechanical crack formation, and fatigue crack formation, to be analyzed in a systematic and… More >

  • Open Access

    ARTICLE

    A Meshless Local Petrov-Galerkin Method for the Analysis of Cracks in the Isotropic Functionally Graded Material

    K.Y. Liu1,2,3, S.Y. Long1,2,4, G.Y. Li1

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 43-58, 2008, DOI:10.3970/cmc.2008.007.043

    Abstract A meshless local Petrov-Galerkin method (MLPG) [[Atluri and Zhu (1998)] for the analysis of cracks in isotropic functionally graded materials is presented. The meshless method uses the moving least squares (MLS) to approximate the field unknowns. The shape function has not the Kronecker Delta properties for the trial-function-interpolation, and a direct interpolation method is adopted to impose essential boundary conditions. The MLPG method does not involve any domain and singular integrals to generate the global effective stiffness matrix if body force is ignored; it only involves a regular boundary integral. The material properties are smooth functions of spatial coordinates and… More >

  • Open Access

    ARTICLE

    Matrix Crack Detection in Composite Plate with Spatially Random Material Properties using Fractal Dimension

    K. Umesh1, R. Ganguli1

    CMC-Computers, Materials & Continua, Vol.41, No.3, pp. 215-240, 2014, DOI:10.3970/cmc.2014.041.215

    Abstract Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. Two dimensional homogeneous Gaussian random… More >

  • Open Access

    ARTICLE

    Analytical Models for Sliding Interfaces Associated with Fibre Fractures or Matrix Cracks

    L. N. McCartney1

    CMC-Computers, Materials & Continua, Vol.35, No.3, pp. 183-227, 2013, DOI:10.3970/cmc.2013.035.183

    Abstract Analytical stress transfer models are described that enable estimates to be made of the stress and displacement fields that are associated with fibre fractures or matrix cracks in unidirectional fibre reinforced composites. The models represent a clear improvement on popular shear-lag based methodologies. The model takes account of thermal residual stresses, and is based on simplifying assumptions that the axial stress in the fibre is independent of the radial coordinate, and similarly for the matrix. A representation for both the stress and displacement fields is derived that satisfies exactly the equilibrium equations, the required interface continuity equations for displacement and… More >

  • Open Access

    ARTICLE

    Interfaces Between two Dissimilar Elastic Materials

    Chyanbin Hwu1, T.L. Kuo, Y.C. Chen

    CMC-Computers, Materials & Continua, Vol.11, No.3, pp. 165-184, 2009, DOI:10.3970/cmc.2009.011.165

    Abstract In this paper the near tip solutions for interface corners written in terms of the stress intensity factors are presented in a unified expression. This single expression is applicable for any kinds of interface corners including corners and cracks in homogeneous materials as well as interface corners and interface cracks lying between two dissimilar materials, in which the materials can be any kinds of linear elastic anisotropic materials or piezoelectric materials. Through this unified expression of near tip solutions, the singular orders of stresses and their associated stress/electric intensity factors for different kinds of interface problems can be determined through… More >

  • Open Access

    ARTICLE

    Analysis of Solids with Numerous Microcracks Using the Fast Multipole DBEM

    P. B. Wang1, Z. H. Yao1,2, T. Lei1

    CMC-Computers, Materials & Continua, Vol.3, No.2, pp. 65-76, 2006, DOI:10.3970/cmc.2006.003.065

    Abstract The fast multipole method (FMM) is applied to the dual boundary element method (DBEM) for the analysis of finite solids with large numbers of microcracks. The application of FMM significantly enhances the run-time and memory storage efficiency. Combining multipole expansions with local expansions, computational complexity and memory requirement are both reduced to O(N), where N is the number of DOFs (degrees of freedom). This numerical scheme is used to compute the effective in-plane bulk modulus of 2D solids with thousands of randomly distributed microcracks. The results prove that the IDD method, the differential method, and the method proposed by Feng… More >

Displaying 81-90 on page 9 of 88. Per Page