Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Renewable Bis-benzoxazine Monomers from Lignin Derivatives: Synthesis, Characterization and Studies on Curing Behavior

    CHUNYAN LIU*, YUNHE LIU, ZIHAN PAN, QIUTING LI, HAN XU, TAO LIU

    Journal of Polymer Materials, Vol.36, No.1, pp. 87-99, 2019, DOI:10.32381/JPM.2019.36.01.7

    Abstract In this work, a series of novel lignin-based bis-benzoxazine monomers were efficiently synthesized by the reaction of renewable phenols: guaiacol, vanillyl alcohol, eugenol, vanillin with ethylene diamine and paraformaldehyde. The chemical structures of these lignin-based bis-benzoxazine monomers were confirmed by 1H-NMR, 13C-NMR and FTIR, indicating the formation of benzoxazine ring. The obtained bis-benzoxazine monomers were cured via thermal treatment. The curing behavior of these lignin-based bis-benzoxazine monomers were compared and analyzed via differential scanning calorimetry (DSC), showing that Va-e possessed higher ring-opening polymerization activity than G-e, while E-e and V-e had lower curing activity than G-e. More >

  • Open Access

    ARTICLE

    Curing Kinetics of Epoxy Resin of (2E, 6E) 2,6-Bis (4-hydroxy benzylidene) Cyclohexanone

    DHARMESH B. SANKHAVARA, JALPA V. CHOPDA, JIGNESH P. PATEL, PARSOTAM H. PARSANIA*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 11-19, 2021, DOI:10.32381/JPM.2021.38.1-2.2

    Abstract The curing of epoxy resin of (2E, 6E)-2,6-bis(4-hydroxy benzylidene) cyclohexanone (EBHBC) was carried out at four different heating rates in the nitrogen atmosphere by using 4,4’-diamino diphenylmethane (DDM), 4,4’-diamino diphenyl sulfone (DDS), and 1,2,3,6-tetrahydrophthalic anhydride (THPA) as hardeners. From DSC curves onset, peak exotherm and end set temperatures, as well as heat release, were derived. The energy of activation was derived following Kissinger and Ozawa methods. Observed trend in Ea is EBHBC-THPA > EBHBCDDS > EBHBC-DDM > EBHBC. Nature and chemical structure of the hardeners affected the curing of EBHBC. More >

  • Open Access

    ARTICLE

    Curing Kinetics of Tannin and Lignin Biobased Adhesives Determined by DSC and ABES

    Jaša Saražin1, Ida Poljanšek1, Antonio Pizzi2, Milan Šernek1,*

    Journal of Renewable Materials, Vol.10, No.8, pp. 2117-2131, 2022, DOI:10.32604/jrm.2022.019602

    Abstract The curing process of two biobased adhesives: pine tanninhexamine (TH) and organosolv lignin non-isocyanate polyurethane (NIPU), suitable for interior nonstructural use, were compared with commercial urea-formaldehyde (UF) adhesive. Changes in chemical structure before and after the curing process were observed with Fouriertransform infrared spectroscopy (FTIR). The process of adhesive curing was monitored with differential scanning calorimetry (DSC) and the automated bonding evaluation system (ABES). Both DSC and ABES measurements confirmed UF as the fastest and NIPU as the slowest curing adhesive observed. Taking into account the ABES results, the optimal pressing parameters for the TH adhesive would be 4 min… More >

Displaying 1-10 on page 1 of 3. Per Page