Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    Large Language Models for Effective Detection of Algorithmically Generated Domains: A Comprehensive Review

    Hamed Alqahtani1, Gulshan Kumar2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1439-1479, 2025, DOI:10.32604/cmes.2025.067738 - 31 August 2025

    Abstract Domain Generation Algorithms (DGAs) continue to pose a significant threat in modern malware infrastructures by enabling resilient and evasive communication with Command and Control (C&C) servers. Traditional detection methods—rooted in statistical heuristics, feature engineering, and shallow machine learning—struggle to adapt to the increasing sophistication, linguistic mimicry, and adversarial variability of DGA variants. The emergence of Large Language Models (LLMs) marks a transformative shift in this landscape. Leveraging deep contextual understanding, semantic generalization, and few-shot learning capabilities, LLMs such as BERT, GPT, and T5 have shown promising results in detecting both character-based and dictionary-based DGAs, including… More >

  • Open Access

    ARTICLE

    Classification of Cyber Threat Detection Techniques for Next-Generation Cyber Defense via Hesitant Bipolar Fuzzy Frank Information

    Hafiz Muhammad Waqas1, Tahir Mahmood1,2, Walid Emam3, Ubaid ur Rehman4, Dragan Pamucar5,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4699-4727, 2025, DOI:10.32604/cmc.2025.065011 - 30 July 2025

    Abstract Cyber threat detection is a crucial aspect of contemporary cybersecurity due to the depth and complexity of cyberattacks. It is the identification of malicious activity, unauthorized access, and possible intrusions in networks and systems. Modern detection methods employ artificial intelligence and machine learning to study vast amounts of data, learn patterns, and anticipate potential threats. Real-time monitoring and anomaly detection improve the capacity to react to changing threats more rapidly. Cyber threat detection systems aim to reduce false positives and provide complete coverage against the broadest possible attacks. This research advocates for proactive measures and… More >

  • Open Access

    ARTICLE

    Multiclass Classification for Cyber Threats Detection on Twitter

    Adnan Hussein1, Abdulwahab Ali Almazroi2,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3853-3866, 2023, DOI:10.32604/cmc.2023.040856 - 26 December 2023

    Abstract The advances in technology increase the number of internet systems usage. As a result, cybersecurity issues have become more common. Cyber threats are one of the main problems in the area of cybersecurity. However, detecting cybersecurity threats is not a trivial task and thus is the center of focus for many researchers due to its importance. This study aims to analyze Twitter data to detect cyber threats using a multiclass classification approach. The data is passed through different tasks to prepare it for the analysis. Term Frequency and Inverse Document Frequency (TFIDF) features are extracted… More >

Displaying 1-10 on page 1 of 3. Per Page