Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access


    Direct Pointwise Comparison of FE Predictions to StereoDIC Measurements: Developments and Validation Using Double Edge-Notched Tensile Specimen

    Troy Myers1, Michael A. Sutton1,*, Hubert Schreier2, Alistair Tofts2, Sreehari Rajan Kattil1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1263-1298, 2024, DOI:10.32604/cmes.2024.048743

    Abstract To compare finite element analysis (FEA) predictions and stereovision digital image correlation (StereoDIC) strain measurements at the same spatial positions throughout a region of interest, a field comparison procedure is developed. The procedure includes (a) conversion of the finite element data into a triangular mesh, (b) selection of a common coordinate system, (c) determination of the rigid body transformation to place both measurements and FEA data in the same system and (d) interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates. For an aluminum Al-6061 double edge More >

  • Open Access


    Defect Detection Model Using Time Series Data Augmentation and Transformation

    Gyu-Il Kim1, Hyun Yoo2, Han-Jin Cho3, Kyungyong Chung4,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1713-1730, 2024, DOI:10.32604/cmc.2023.046324

    Abstract Time-series data provide important information in many fields, and their processing and analysis have been the focus of much research. However, detecting anomalies is very difficult due to data imbalance, temporal dependence, and noise. Therefore, methodologies for data augmentation and conversion of time series data into images for analysis have been studied. This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance, temporal dependence, and robustness to noise. The method of data augmentation is set as the addition of noise. It involves adding… More >

  • Open Access


    An Efficient Schema Transformation Technique for Data Migration from Relational to Column-Oriented Databases

    Norwini Zaidi1, Iskandar Ishak2,*, Fatimah Sidi2, Lilly Suriani Affendey2

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1175-1188, 2022, DOI:10.32604/csse.2022.021969

    Abstract Data transformation is the core process in migrating database from relational database to NoSQL database such as column-oriented database. However, there is no standard guideline for data transformation from relational database to NoSQL database. A number of schema transformation techniques have been proposed to improve data transformation process and resulted better query processing time when compared to the relational database query processing time. However, these approaches produced redundant tables in the resulted schema that in turn consume large unnecessary storage size and produce high query processing time due to the generated schema with redundant column… More >

  • Open Access


    Noisy ECG Signal Data Transformation to Augment Classification Accuracy

    Iqra Afzal1, Fiaz Majeed1, Muhammad Usman Ali2, Shahzada Khurram3, Akber Abid Gardezi4, Shafiq Ahmad5, Saad Aladyan5, Almetwally M. Mostafa6, Muhammad Shafiq7,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2191-2207, 2022, DOI:10.32604/cmc.2022.022711

    Abstract In this era of electronic health, healthcare data is very important because it contains information about human survival. In addition, the Internet of Things (IoT) revolution has redefined modern healthcare systems and management by providing continuous monitoring. In this case, the data related to the heart is more important and requires proper analysis. For the analysis of heart data, Electrocardiogram (ECG) is used. In this work, machine learning techniques, such as adaptive boosting (AdaBoost) is used for detecting normal sinus rhythm, atrial fibrillation (AF), and noise in ECG signals to improve the classification accuracy. The… More >

  • Open Access


    Novel Power Transformer Fault Diagnosis Using Optimized Machine Learning Methods

    Ibrahim B.M. Taha1, Diaa-Eldin A. Mansour2,*

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 739-752, 2021, DOI:10.32604/iasc.2021.017703

    Abstract Power transformer is one of the more important components of electrical power systems. The early detection of transformer faults increases the power system reliability. Dissolved gas analysis (DGA) is one of the most favorite approaches used for power transformer fault prediction due to its easiness and applicability for online diagnosis. However, the imbalanced, insufficient and overlap of DGA dataset impose a challenge towards powerful and accurate diagnosis. In this work, a novel fault diagnosis for power transformers is introduced based on DGA by using data transformation and six optimized machine learning (OML) methods. Four data… More >

Displaying 1-10 on page 1 of 5. Per Page