Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    REVIEW

    Ensemble Deep Learning Approaches in Health Care: A Review

    Aziz Alotaibi*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3741-3771, 2025, DOI:10.32604/cmc.2025.061998 - 06 March 2025

    Abstract Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data. Recently, both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions. With the growth in popularity of deep learning and ensemble learning algorithms, they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data. Ensemble deep learning has exhibited significant performance in enhancing learning generalization through… More >

  • Open Access

    ARTICLE

    Steel Surface Defect Recognition in Smart Manufacturing Using Deep Ensemble Transfer Learning-Based Techniques

    Tajmal Hussain, Jongwon Seok*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 231-250, 2025, DOI:10.32604/cmes.2024.056621 - 17 December 2024

    Abstract Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence (AI) and internet of things (IoT) to enhance efficiency, reduce costs, and ensure product quality. In light of the recent advancement of Industry 4.0, identifying defects has become important for ensuring the quality of products during the manufacturing process. In this research, we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network (CNN) architectures: VGG16, VGG19, Xception, and Mobile-Net V2, compensating for their… More >

  • Open Access

    ARTICLE

    A Scalable and Generalized Deep Ensemble Model for Road Anomaly Detection in Surveillance Videos

    Sarfaraz Natha1,2,*, Fareed A. Jokhio1, Mehwish Laghari1, Mohammad Siraj3,*, Saif A. Alsaif3, Usman Ashraf4, Asghar Ali5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3707-3729, 2024, DOI:10.32604/cmc.2024.057684 - 19 December 2024

    Abstract Surveillance cameras have been widely used for monitoring in both private and public sectors as a security measure. Close Circuits Television (CCTV) Cameras are used to surveillance and monitor the normal and anomalous incidents. Real-world anomaly detection is a significant challenge due to its complex and diverse nature. It is difficult to manually analyze because vast amounts of video data have been generated through surveillance systems, and the need for automated techniques has been raised to enhance detection accuracy. This paper proposes a novel deep-stacked ensemble model integrated with a data augmentation approach called Stack… More >

  • Open Access

    ARTICLE

    Augmenting Internet of Medical Things Security: Deep Ensemble Integration and Methodological Fusion

    Hamad Naeem1, Amjad Alsirhani2,*, Faeiz M. Alserhani3, Farhan Ullah4, Ondrej Krejcar1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2185-2223, 2024, DOI:10.32604/cmes.2024.056308 - 31 October 2024

    Abstract When it comes to smart healthcare business systems, network-based intrusion detection systems are crucial for protecting the system and its networks from malicious network assaults. To protect IoMT devices and networks in healthcare and medical settings, our proposed model serves as a powerful tool for monitoring IoMT networks. This study presents a robust methodology for intrusion detection in Internet of Medical Things (IoMT) environments, integrating data augmentation, feature selection, and ensemble learning to effectively handle IoMT data complexity. Following rigorous preprocessing, including feature extraction, correlation removal, and Recursive Feature Elimination (RFE), selected features are standardized… More >

  • Open Access

    ARTICLE

    DNEF: A New Ensemble Framework Based on Deep Network Structure

    Siyu Yang1, Ge Song1,*, Yuqiao Deng2, Changyu Liu1, Zhuoyu Ou1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 4055-4072, 2023, DOI:10.32604/cmc.2023.042277 - 26 December 2023

    Abstract Deep neural networks have achieved tremendous success in various fields, and the structure of these networks is a key factor in their success. In this paper, we focus on the research of ensemble learning based on deep network structure and propose a new deep network ensemble framework (DNEF). Unlike other ensemble learning models, DNEF is an ensemble learning architecture of network structures, with serial iteration between the hidden layers, while base classifiers are trained in parallel within these hidden layers. Specifically, DNEF uses randomly sampled data as input and implements serial iteration based on the… More >

  • Open Access

    ARTICLE

    Classifying Hematoxylin and Eosin Images Using a Super-Resolution Segmentor and a Deep Ensemble Classifier

    P. Sabitha*, G. Meeragandhi

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1983-2000, 2023, DOI:10.32604/iasc.2023.034402 - 21 June 2023

    Abstract Developing an automatic and credible diagnostic system to analyze the type, stage, and level of the liver cancer from Hematoxylin and Eosin (H&E) images is a very challenging and time-consuming endeavor, even for experienced pathologists, due to the non-uniform illumination and artifacts. Albeit several Machine Learning (ML) and Deep Learning (DL) approaches are employed to increase the performance of automatic liver cancer diagnostic systems, the classification accuracy of these systems still needs significant improvement to satisfy the real-time requirement of the diagnostic situations. In this work, we present a new Ensemble Classifier (hereafter called ECNet)… More >

  • Open Access

    ARTICLE

    An Efficient Automated Technique for Classification of Breast Cancer Using Deep Ensemble Model

    Muhammad Zia Ur Rehman1, Jawad Ahmad2,*, Emad Sami Jaha3, Abdullah Marish Ali3, Mohammed A. Alzain4, Faisal Saeed5

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 897-911, 2023, DOI:10.32604/csse.2023.035382 - 20 January 2023

    Abstract Breast cancer is one of the leading cancers among women. It has the second-highest mortality rate in women after lung cancer. Timely detection, especially in the early stages, can help increase survival rates. However, manual diagnosis of breast cancer is a tedious and time-consuming process, and the accuracy of detection is reliant on the quality of the images and the radiologist’s experience. However, computer-aided medical diagnosis has recently shown promising results, leading to the need to develop an efficient system that can aid radiologists in diagnosing breast cancer in its early stages. The research presented… More >

  • Open Access

    ARTICLE

    Emotion Recognition from Occluded Facial Images Using Deep Ensemble Model

    Zia Ullah1, Muhammad Ismail Mohmand1, Sadaqat ur Rehman2,*, Muhammad Zubair3, Maha Driss4, Wadii Boulila5, Rayan Sheikh2, Ibrahim Alwawi6

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4465-4487, 2022, DOI:10.32604/cmc.2022.029101 - 28 July 2022

    Abstract Facial expression recognition has been a hot topic for decades, but high intraclass variation makes it challenging. To overcome intraclass variation for visual recognition, we introduce a novel fusion methodology, in which the proposed model first extract features followed by feature fusion. Specifically, RestNet-50, VGG-19, and Inception-V3 is used to ensure feature learning followed by feature fusion. Finally, the three feature extraction models are utilized using Ensemble Learning techniques for final expression classification. The representation learnt by the proposed methodology is robust to occlusions and pose variations and offers promising accuracy. To evaluate the efficiency More >

Displaying 1-10 on page 1 of 8. Per Page