Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,916)
  • Open Access

    ARTICLE

    Automatic Detection of Nephrops Norvegicus Burrows from Underwater Imagery Using Deep Learning

    Atif Naseer1,*, Enrique Nava Baro1, Sultan Daud Khan2, Yolanda Vila3, Jennifer Doyle4

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5321-5344, 2022, DOI:10.32604/cmc.2022.020886 - 11 October 2021

    Abstract The Norway lobster, Nephrops norvegicus, is one of the main commercial crustacean fisheries in Europe. The abundance of Nephrops norvegicus stocks is assessed based on identifying and counting the burrows where they live from underwater videos collected by camera systems mounted on sledges. The Spanish Oceanographic Institute (IEO) and Marine Institute Ireland (MI-Ireland) conducts annual underwater television surveys (UWTV) to estimate the total abundance of Nephrops within the specified area, with a coefficient of variation (CV) or relative standard error of less than 20%. Currently, the identification and counting of the Nephrops burrows are carried out manually by… More >

  • Open Access

    ARTICLE

    Alzheimer Disease Detection Empowered with Transfer Learning

    Taher M. Ghazal1,2, Sagheer Abbas3, Sundus Munir3,4, M. A. Khan5, Munir Ahmad3, Ghassan F. Issa2, Syeda Binish Zahra4, Muhammad Adnan Khan6,*, Mohammad Kamrul Hasan1

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5005-5019, 2022, DOI:10.32604/cmc.2022.020866 - 11 October 2021

    Abstract Alzheimer's disease is a severe neuron disease that damages brain cells which leads to permanent loss of memory also called dementia. Many people die due to this disease every year because this is not curable but early detection of this disease can help restrain the spread. Alzheimer's is most common in elderly people in the age bracket of 65 and above. An automated system is required for early detection of disease that can detect and classify the disease into multiple Alzheimer classes. Deep learning and machine learning techniques are used to solve many medical problems More >

  • Open Access

    ARTICLE

    Improved Dragonfly Optimizer for Intrusion Detection Using Deep Clustering CNN-PSO Classifier

    K. S. Bhuvaneshwari1, K. Venkatachalam2, S. Hubálovský3,*, P. Trojovský4, P. Prabu5

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5949-5965, 2022, DOI:10.32604/cmc.2022.020769 - 11 October 2021

    Abstract With the rapid growth of internet based services and the data generated on these services are attracted by the attackers to intrude the networking services and information. Based on the characteristics of these intruders, many researchers attempted to aim to detect the intrusion with the help of automating process. Since, the large volume of data is generated and transferred through network, the security and performance are remained an issue. IDS (Intrusion Detection System) was developed to detect and prevent the intruders and secure the network systems. The performance and loss are still an issue because… More >

  • Open Access

    ARTICLE

    Multi-Step Detection of Simplex and Duplex Wormhole Attacks over Wireless Sensor Networks

    Abrar M. Alajlan*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4241-4259, 2022, DOI:10.32604/cmc.2022.020585 - 11 October 2021

    Abstract Detection of the wormhole attacks is a cumbersome process, particularly simplex and duplex over the wireless sensor networks (WSNs). Wormhole attacks are characterized as distributed passive attacks that can destabilize or disable WSNs. The distributed passive nature of these attacks makes them enormously challenging to detect. The main objective is to find all the possible ways in which how the wireless sensor network’s broadcasting character and transmission medium allows the attacker to interrupt network within the distributed environment. And further to detect the serious routing-disruption attack “Wormhole Attack” step by step through the different network More >

  • Open Access

    ARTICLE

    Automatic Detection and Classification of Human Knee Osteoarthritis Using Convolutional Neural Networks

    Mohamed Yacin Sikkandar1,*, S. Sabarunisha Begum2, Abdulaziz A. Alkathiry3, Mashhor Shlwan N. Alotaibi1, Md Dilsad Manzar4

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4279-4291, 2022, DOI:10.32604/cmc.2022.020571 - 11 October 2021

    Abstract Knee Osteoarthritis (KOA) is a degenerative knee joint disease caused by ‘wear and tear’ of ligaments between the femur and tibial bones. Clinically, KOA is classified into four grades ranging from 1 to 4 based on the degradation of the ligament in between these two bones and causes suffering from impaired movement. Identifying this space between bones through the anterior view of a knee X-ray image is solely subjective and challenging. Automatic classification of this process helps in the selection of suitable treatment processes and customized knee implants. In this research, a new automatic classification More >

  • Open Access

    ARTICLE

    Fuzzy-Based Automatic Epileptic Seizure Detection Framework

    Aayesha1, Muhammad Bilal Qureshi2, Muhammad Afzaal3, Muhammad Shuaib Qureshi4, Jeonghwan Gwak5,6,7,8,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5601-5630, 2022, DOI:10.32604/cmc.2022.020348 - 11 October 2021

    Abstract Detection of epileptic seizures on the basis of Electroencephalogram (EEG) recordings is a challenging task due to the complex, non-stationary and non-linear nature of these biomedical signals. In the existing literature, a number of automatic epileptic seizure detection methods have been proposed that extract useful features from EEG segments and classify them using machine learning algorithms. Some characterizing features of epileptic and non-epileptic EEG signals overlap; therefore, it requires that analysis of signals must be performed from diverse perspectives. Few studies analyzed these signals in diverse domains to identify distinguishing characteristics of epileptic EEG signals.… More >

  • Open Access

    ARTICLE

    Error Detection and Pattern Prediction Through Phase II Process Monitoring

    Azam Zaka1, Riffat Jabeen2,*, Kanwal Iqbal Khan3

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4781-4802, 2022, DOI:10.32604/cmc.2022.020316 - 11 October 2021

    Abstract The continuous monitoring of the machine is beneficial in improving its process reliability through reflected power function distribution. It is substantial for identifying and removing errors at the early stages of production that ultimately benefit the firms in cost-saving and quality improvement. The current study introduces control charts that help the manufacturing concerns to keep the production process in control. It presents an exponentially weighted moving average and extended exponentially weighted moving average and then compared their performance. The percentiles estimator and the modified maximum likelihood estimator are used to constructing the control charts. The More >

  • Open Access

    ARTICLE

    An Efficient CNN-Based Hybrid Classification and Segmentation Approach for COVID-19 Detection

    Abeer D. Algarni1,*, Walid El-Shafai2, Ghada M. El Banby3, Fathi E. Abd El-Samie1,2, Naglaa F. Soliman1,4

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4393-4410, 2022, DOI:10.32604/cmc.2022.020265 - 11 October 2021

    Abstract COVID-19 remains to proliferate precipitously in the world. It has significantly influenced public health, the world economy, and the persons’ lives. Hence, there is a need to speed up the diagnosis and precautions to deal with COVID-19 patients. With this explosion of this pandemic, there is a need for automated diagnosis tools to help specialists based on medical images. This paper presents a hybrid Convolutional Neural Network (CNN)-based classification and segmentation approach for COVID-19 detection from Computed Tomography (CT) images. The proposed approach is employed to classify and segment the COVID-19, pneumonia, and normal CT… More >

  • Open Access

    ARTICLE

    Machine Learning Approaches to Detect DoS and Their Effect on WSNs Lifetime

    Raniyah Wazirali1, Rami Ahmad2,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4922-4946, 2022, DOI:10.32604/cmc.2022.020044 - 11 October 2021

    Abstract Energy and security remain the main two challenges in Wireless Sensor Networks (WSNs). Therefore, protecting these WSN networks from Denial of Service (DoS) and Distributed DoS (DDoS) is one of the WSN networks security tasks. Traditional packet deep scan systems that rely on open field inspection in transport layer security packets and the open field encryption trend are making machine learning-based systems the only viable choice for these types of attacks. This paper contributes to the evaluation of the use machine learning algorithms in WSN nodes traffic and their effect on WSN network life time.… More >

  • Open Access

    ARTICLE

    An Optimal Text Watermarking Method for Sensitive Detecting of Illegal Tampering Attacks

    Anwer Mustafa Hilal1,*, Fahd N. Al-Wesabi2,3, Mohammed Alamgeer4, Manar Ahmed Hamza1, Mohammad Mahzari5, Murad A. Almekhlafi6

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5583-5600, 2022, DOI:10.32604/cmc.2022.019686 - 11 October 2021

    Abstract Due to the rapid increase in the exchange of text information via internet networks, the security and authenticity of digital content have become a major research issue. The main challenges faced by researchers are how to hide the information within the text to use it later for authentication and attacks tampering detection without effects on the meaning and size of the given digital text. In this paper, an efficient text-based watermarking method has been proposed for detecting the illegal tampering attacks on the Arabic text transmitted online via an Internet network. Towards this purpose, the accuracy… More >

Displaying 1371-1380 on page 138 of 1916. Per Page