Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (214)
  • Open Access

    ARTICLE

    Bus Encoded LUT Multiplier for Portable Biomedical Therapeutic Devices

    R. Praveena1, S. Nirmala2

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 37-47, 2017, DOI:10.3970/cmc.2017.053.039

    Abstract DSP operation in a Biomedical related therapeutic hardware need to be performed with high accuracy and with high speed. Portable DSP hardware’s like pulse/heart beat detectors must perform with reduced operational power due to lack of conventional power sources. This work proposes a hybrid biomedical hardware chip in which the speed and power utilization factors are greatly improved. Multipliers are the core operational unit of any DSP SoC. This work proposes a LUT based unsigned multiplication which is proven to be efficient in terms of high operating speed. For n bit input multiplication n*n memory array of 2n bit size… More >

  • Open Access

    ARTICLE

    Fast and High-Resolution Optical Inspection System for In-Line Detection and Labeling of Surface Defects

    M. Chang1,2,3, Y. C. Chou1,2, P. T. Lin1,2, J. L. Gabayno2,4

    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 125-140, 2014, DOI:10.3970/cmc.2014.042.125

    Abstract Automated optical inspection systems installed in production lines help ensure high throughput by speeding up inspection of defects that are otherwise difficult to detect using the naked eye. However, depending on the size and surface properties of the products such as micro-cracks on touchscreen panels glass cover, the detection speed and accuracy are limited by the imaging module and lighting technique. Therefore the current inspection methods are still delegated to a few qualified personnel whose limited capacity has been a huge tradeoff for high volume production. In this study, an automated optical technology for in-line surface defect inspection is developed… More >

  • Open Access

    ARTICLE

    Rupture and Instability of Soft Films due to Moisture Vaporization in Microelectronic Devices

    Linsen Zhu1, Jiang Zhou2, Xuejun Fan2

    CMC-Computers, Materials & Continua, Vol.39, No.2, pp. 113-134, 2014, DOI:10.3970/cmc.2014.039.113

    Abstract In this paper, a damage mechanics-based continuum theory is developed for the coupled analysis of moisture vaporization, moisture absorption and desorption, heat conduction, and mechanical stress for a reflow process in microelectronic devices. The extremely compliant film has been used in wafer level lamination process. Such a soft film experiences cohesive rupture subjected to moisture absorption during reflow. The numerical simulation results have demonstrated that vapor pressure due to moisture vaporization is the dominant driving force for the failures. The correlation between the vapor pressure evolution and the film rupture observed from the experiments have been established through two case… More >

  • Open Access

    ARTICLE

    Design of a Two-State Shuttle Memory Device

    Richard K. F. Lee1, James M. Hill2

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 85-100, 2010, DOI:10.3970/cmc.2010.020.085

    Abstract In this study, we investigate the mechanics of a metallofullerene shuttle memory device, comprising a metallofullerene which is located inside a closed carbon nanotube. The interaction energy for the system is obtained from the 6-12 Lennard-Jones potential using the continuum approximation, which assumes that a discrete atomic structure can be replaced by an average atomic surface density. This approach shows that the system has two equal minimum energy positions, which are symmetrically located close to the tube extremities, and therefore it gives rise to the possibility of being used as a two-state memory device. On one side the encapsulated metallofullerene… More >

Displaying 211-220 on page 22 of 214. Per Page