Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Blockchain-Enabled Federated Learning for Privacy-Preserving Non-IID Data Sharing in Industrial Internet

    Qiuyan Wang, Haibing Dong*, Yongfei Huang, Zenglei Liu, Yundong Gou

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1967-1983, 2024, DOI:10.32604/cmc.2024.052775 - 15 August 2024

    Abstract Sharing data while protecting privacy in the industrial Internet is a significant challenge. Traditional machine learning methods require a combination of all data for training; however, this approach can be limited by data availability and privacy concerns. Federated learning (FL) has gained considerable attention because it allows for decentralized training on multiple local datasets. However, the training data collected by data providers are often non-independent and identically distributed (non-IID), resulting in poor FL performance. This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Information Fusion Technique for Device to Server-Enabled Communication in the Internet of Things: A Hybrid Approach

    Amal Al-Rasheed1, Rahim Khan2,3,*, Tahani Alsaed4, Mahwish Kundi2,5, Mohamad Hanif Md. Saad6, Mahidur R. Sarker7,8

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1305-1323, 2024, DOI:10.32604/cmc.2024.049215 - 18 July 2024

    Abstract Due to the overwhelming characteristics of the Internet of Things (IoT) and its adoption in approximately every aspect of our lives, the concept of individual devices’ privacy has gained prominent attention from both customers, i.e., people, and industries as wearable devices collect sensitive information about patients (both admitted and outdoor) in smart healthcare infrastructures. In addition to privacy, outliers or noise are among the crucial issues, which are directly correlated with IoT infrastructures, as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing, i.e.,… More >

  • Open Access

    ARTICLE

    VKFQ: A Verifiable Keyword Frequency Query Framework with Local Differential Privacy in Blockchain

    Youlin Ji, Bo Yin*, Ke Gu

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4205-4223, 2024, DOI:10.32604/cmc.2024.049086 - 26 March 2024

    Abstract With its untameable and traceable properties, blockchain technology has been widely used in the field of data sharing. How to preserve individual privacy while enabling efficient data queries is one of the primary issues with secure data sharing. In this paper, we study verifiable keyword frequency (KF) queries with local differential privacy in blockchain. Both the numerical and the keyword attributes are present in data objects; the latter are sensitive and require privacy protection. However, prior studies in blockchain have the problem of trilemma in privacy protection and are unable to handle KF queries. We… More >

  • Open Access

    ARTICLE

    Differentially Private Support Vector Machines with Knowledge Aggregation

    Teng Wang, Yao Zhang, Jiangguo Liang, Shuai Wang, Shuanggen Liu*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3891-3907, 2024, DOI:10.32604/cmc.2024.048115 - 26 March 2024

    Abstract With the widespread data collection and processing, privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals. Support vector machine (SVM) is one of the most elementary learning models of machine learning. Privacy issues surrounding SVM classifier training have attracted increasing attention. In this paper, we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction, called FedDPDR-DPML, which greatly improves data utility while providing strong privacy guarantees. Considering in distributed learning scenarios, multiple participants usually hold unbalanced or small amounts of data. Therefore, FedDPDR-DPML enables multiple participants to collaboratively learn a global… More >

  • Open Access

    ARTICLE

    KSKV: Key-Strategy for Key-Value Data Collection with Local Differential Privacy

    Dan Zhao1, Yang You2, Chuanwen Luo3,*, Ting Chen4,*, Yang Liu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3063-3083, 2024, DOI:10.32604/cmes.2023.045400 - 11 March 2024

    Abstract In recent years, the research field of data collection under local differential privacy (LDP) has expanded its focus from elementary data types to include more complex structural data, such as set-value and graph data. However, our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection. Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key. Additionally, the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not… More >

  • Open Access

    ARTICLE

    Efficient DP-FL: Efficient Differential Privacy Federated Learning Based on Early Stopping Mechanism

    Sanxiu Jiao1, Lecai Cai2,*, Jintao Meng3, Yue Zhao3, Kui Cheng2

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 247-265, 2024, DOI:10.32604/csse.2023.040194 - 26 January 2024

    Abstract Federated learning is a distributed machine learning framework that solves data security and data island problems faced by artificial intelligence. However, federated learning frameworks are not always secure, and attackers can attack customer privacy information by analyzing parameters in the training process of federated learning models. To solve the problems of data security and availability during federated learning training, this paper proposes an Efficient Differential Privacy Federated Learning Algorithm based on early stopping mechanism (Efficient DP-FL). This method inherits the advantages of differential privacy and federated learning and improves the performance of model training while More >

  • Open Access

    ARTICLE

    A Differential Privacy Federated Learning Scheme Based on Adaptive Gaussian Noise

    Sanxiu Jiao1, Lecai Cai2,*, Xinjie Wang1, Kui Cheng2, Xiang Gao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1679-1694, 2024, DOI:10.32604/cmes.2023.030512 - 17 November 2023

    Abstract As a distributed machine learning method, federated learning (FL) has the advantage of naturally protecting data privacy. It keeps data locally and trains local models through local data to protect the privacy of local data. The federated learning method effectively solves the problem of artificial Smart data islands and privacy protection issues. However, existing research shows that attackers may still steal user information by analyzing the parameters in the federated learning training process and the aggregation parameters on the server side. To solve this problem, differential privacy (DP) techniques are widely used for privacy protection… More > Graphic Abstract

    A Differential Privacy Federated Learning Scheme Based on Adaptive Gaussian Noise

  • Open Access

    ARTICLE

    A Blockchain-Assisted Distributed Edge Intelligence for Privacy-Preserving Vehicular Networks

    Muhammad Firdaus1, Harashta Tatimma Larasati2, Kyung-Hyune Rhee3,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2959-2978, 2023, DOI:10.32604/cmc.2023.039487 - 08 October 2023

    Abstract The enormous volume of heterogeneous data from various smart device-based applications has growingly increased a deeply interlaced cyber-physical system. In order to deliver smart cloud services that require low latency with strong computational processing capabilities, the Edge Intelligence System (EIS) idea is now being employed, which takes advantage of Artificial Intelligence (AI) and Edge Computing Technology (ECT). Thus, EIS presents a potential approach to enforcing future Intelligent Transportation Systems (ITS), particularly within a context of a Vehicular Network (VNets). However, the current EIS framework meets some issues and is conceivably vulnerable to multiple adversarial attacks… More >

  • Open Access

    ARTICLE

    Federated Learning Based on Data Divergence and Differential Privacy in Financial Risk Control Research

    Mao Yuxin, Wang Honglin*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 863-878, 2023, DOI:10.32604/cmc.2023.034879 - 06 February 2023

    Abstract In the financial sector, data are highly confidential and sensitive, and ensuring data privacy is critical. Sample fusion is the basis of horizontal federation learning, but it is suitable only for scenarios where customers have the same format but different targets, namely for scenarios with strong feature overlapping and weak user overlapping. To solve this limitation, this paper proposes a federated learning-based model with local data sharing and differential privacy. The indexing mechanism of differential privacy is used to obtain different degrees of privacy budgets, which are applied to the gradient according to the contribution… More >

  • Open Access

    ARTICLE

    Research on Federated Learning Data Sharing Scheme Based on Differential Privacy

    Lihong Guo*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5069-5085, 2023, DOI:10.32604/cmc.2023.034571 - 28 December 2022

    Abstract To realize data sharing, and to fully use the data value, breaking the data island between institutions to realize data collaboration has become a new sharing mode. This paper proposed a distributed data security sharing scheme based on C/S communication mode, and constructed a federated learning architecture that uses differential privacy technology to protect training parameters. Clients do not need to share local data, and they only need to upload the trained model parameters to achieve data sharing. In the process of training, a distributed parameter update mechanism is introduced. The server is mainly responsible… More >

Displaying 1-10 on page 1 of 20. Per Page