Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    THERMO-GEOMETRIC PARAMETER EFFECTS ON CONVECTIVELY COOLED INHOMOGENEOUS RECTANGULAR FIN

    Ernest Léontin Lemouboua , Hervé Thierry Tagne Kamdema,* , Jean Roger Bogningb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.34

    Abstract Numerical experiments involving heat transfer were performed to analyze the influence of both fin thermo-geometric parameter and cooling boundary conditions on the temperature distribution and the efficiency of convective cooled inhomogeneous rectangular fin. The inhomogeneity of the fin is due to both temperature dependent thermal conductivity and convection heat coefficients. The analysis was facilitated by the use of the differential transformation method, which can solve nonlinear differential equation. A specific application is first made for temperature/efficiency homogeneous fin predictions and the results are in excellent agreement with standard exact results. Predictions of inhomogeneous fin temperature and efficiency for three different… More >

  • Open Access

    ARTICLE

    New Fuzzy Fractional Epidemic Model Involving Death Population

    Prasantha Bharathi Dhandapani1, Dumitru Baleanu2,3,4,*, Jayakumar Thippan1, Vinoth Sivakumar1

    Computer Systems Science and Engineering, Vol.37, No.3, pp. 331-346, 2021, DOI:10.32604/csse.2021.015619

    Abstract In this research, we propose a new change in classical epidemic models by including the change in the rate of death in the overall population. The existing models like Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Recovered-Susceptible (SIRS) include the death rate as one of the parameters to estimate the change in susceptible, infected and recovered populations. Actually, because of the deficiencies in immunity, even the ordinary flu could cause death. If people’s disease resistance is strong, then serious diseases may not result in mortalities. The classical model always assumes a closed system where there is no new birth or death, no immigration or… More >

  • Open Access

    ARTICLE

    A Semi-analytical Method for Vibrational and Buckling Analysis of Functionally Graded Nanobeams Considering the Physical Neutral Axis Position

    Farzad Ebrahimi1,2, Erfan Salari1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.2, pp. 151-181, 2015, DOI:10.3970/cmes.2015.105.151

    Abstract In this paper, a semi-analytical method is presented for free vibration and buckling analysis of functionally graded (FG) size-dependent nanobeams based on the physical neutral axis position. It is the first time that a semi-analytical differential transform method (DTM) solution is developed for the FG nanobeams vibration and buckling analysis. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form. The physical neutral axis position for mentioned FG nanobeams is determined. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are… More >

  • Open Access

    ARTICLE

    Surface Heating Problems of Thermal Propagation in Living Tissue Solved by Differential Transformation Method

    Jui-Hsun Ni, Cheng-Chi Chang, Yue-Tzu Yang, Cha’o-Kung Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.1, pp. 37-52, 2011, DOI:10.3970/cmes.2011.072.037

    Abstract The hybrid method, which combines differential transformation and finite difference approximation techniques, is utilized to solve hyperbolic-type heat conduction (bio-heat) problems in one dimension. To capture the thermal behavior in a living tissue subjected to constant or exponential surface heating with the thermal wave model of bio-heat transfer, the relaxation time and the heat wave, which propagates in a direction perpendicular to the skin surface, are considered. The results show that the hybrid method can be used to solve hyperbolic heat conduction problems accurately. More >

Displaying 1-10 on page 1 of 4. Per Page