Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    Unsupervised Domain Adaptation Based on Discriminative Subspace Learning for Cross-Project Defect Prediction

    Ying Sun1, Yanfei Sun1,2,*, Jin Qi1, Fei Wu1, Xiao-Yuan Jing1,3, Yu Xue4, Zixin Shen5

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3373-3389, 2021, DOI:10.32604/cmc.2021.016539

    Abstract Cross-project defect prediction (CPDP) aims to predict the defects on target project by using a prediction model built on source projects. The main problem in CPDP is the huge distribution gap between the source project and the target project, which prevents the prediction model from performing well. Most existing methods overlook the class discrimination of the learned features. Seeking an effective transferable model from the source project to the target project for CPDP is challenging. In this paper, we propose an unsupervised domain adaptation based on the discriminative subspace learning (DSL) approach for CPDP. DSL treats the data from two… More >

Displaying 1-10 on page 1 of 1. Per Page