Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    ARTICLE

    Pareto Multi-Objective Reconfiguration of IEEE 123-Bus Unbalanced Power Distribution Networks Using Metaheuristic Algorithms: A Comprehensive Analysis of Power Quality Improvement

    Nisa Nacar Çıkan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3279-3327, 2025, DOI:10.32604/cmes.2025.065442 - 30 June 2025

    Abstract This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks (UPDNs), focusing on the complex 123-Bus test system. Three scenarios are investigated: (1) simultaneous power loss reduction and voltage profile improvement, (2) minimization of voltage and current unbalance indices under various operational cases, and (3) multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index, active power loss, and current unbalance index. Unlike previous research that oftensimplified system components, this work maintains all equipment, including capacitor banks, transformers, and voltage regulators, to ensure realistic results. The study evaluates twelve metaheuristic More >

  • Open Access

    ARTICLE

    Optimization of Reconfiguration and Resource Allocation for Distributed Generation and Capacitor Banks Using NSGA-II: A Multi-Scenario Approach

    Tareq Hamadneh1, Belal Batiha2, Frank Werner3,*, Mehrdad Ahmadi Kamarposhti4,*, Ilhami Colak5, El Manaa Barhoumi6

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1519-1548, 2025, DOI:10.32604/cmes.2025.063571 - 30 May 2025

    Abstract Reconfiguration, as well as optimal utilization of distributed generation sources and capacitor banks, are highly effective methods for reducing losses and improving the voltage profile, or in other words, the power quality in the power distribution system. Researchers have considered the use of distributed generation resources in recent years. There are numerous advantages to utilizing these resources, the most significant of which are the reduction of network losses and enhancement of voltage stability. Non-dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and Intersect Mutation Differential Evolution (IMDE) algorithms are used in this… More >

  • Open Access

    ARTICLE

    An Adaptive Virtual Impedance Control for Voltage and Frequency Regulation of Islanded Distribution Networks Based on Multi-Agent Consensus

    Jiran Zhu1, Silin He1, Chun Chen2,*, Li Zhou2, Hongqing Li1, Di Zhang1, Fenglin Hua1, Tianhao Zhu2

    Energy Engineering, Vol.122, No.6, pp. 2465-2483, 2025, DOI:10.32604/ee.2025.065453 - 29 May 2025

    Abstract In the islanded operation of distribution networks, due to the mismatch of line impedance at the inverter output, conventional droop control leads to inaccurate power sharing according to capacity, resulting in voltage and frequency fluctuations under minor external disturbances. To address this issue, this paper introduces an enhanced scheme for power sharing and voltage-frequency control. First, to solve the power distribution problem, we propose an adaptive virtual impedance control based on multi-agent consensus, which allows for precise active and reactive power allocation without requiring feeder impedance knowledge. Moreover, a novel consensus-based voltage and frequency control More >

  • Open Access

    ARTICLE

    Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting

    Huanan Yu, Chunhe Ye, Shiqiang Li*, He Wang, Jing Bian, Jinling Li

    Energy Engineering, Vol.122, No.6, pp. 2417-2448, 2025, DOI:10.32604/ee.2025.061214 - 29 May 2025

    Abstract With the increasing integration of large-scale distributed energy resources into the grid, traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load. Accounting for these issues, this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks. First, the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts, based on which, the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed. Subsequently, a multi-timescale optimization framework was constructed, incorporating the generation and load forecast uncertainties. More >

  • Open Access

    ARTICLE

    Advanced Nodal Pricing Strategies for Modern Power Distribution Networks: Enhancing Market Efficiency and System Reliability

    Ganesh Wakte1,*, Mukesh Kumar2, Mohammad Aljaidi3, Ramesh Kumar4, Manish Kumar Singla4

    Energy Engineering, Vol.122, No.6, pp. 2519-2537, 2025, DOI:10.32604/ee.2025.060658 - 29 May 2025

    Abstract Nodal pricing is a critical mechanism in electricity markets, utilized to determine the cost of power transmission to various nodes within a distribution network. As power systems evolve to incorporate higher levels of renewable energy and face increasing demand fluctuations, traditional nodal pricing models often fall short to meet these new challenges. This research introduces a novel enhanced nodal pricing mechanism for distribution networks, integrating advanced optimization techniques and hybrid models to overcome these limitations. The primary objective is to develop a model that not only improves pricing accuracy but also enhances operational efficiency and… More > Graphic Abstract

    Advanced Nodal Pricing Strategies for Modern Power Distribution Networks: Enhancing Market Efficiency and System Reliability

  • Open Access

    ARTICLE

    Adaptive Multi-Objective Energy Management Strategy Considering the Differentiated Demands of Distribution Networks with a High Proportion of New-Generation Sources and Loads

    Huang Tan1, Haibo Yu1, Tianyang Chen1, Hanjun Deng2, Yetong Hu3,*

    Energy Engineering, Vol.122, No.5, pp. 1949-1973, 2025, DOI:10.32604/ee.2025.062574 - 25 April 2025

    Abstract With the increasing integration of emerging source-load types such as distributed photovoltaics, electric vehicles, and energy storage into distribution networks, the operational characteristics of these networks have evolved from traditional single-load centers to complex multi-source, multi-load systems. This transition not only increases the difficulty of effectively classifying distribution networks due to their heightened complexity but also renders traditional energy management approaches—primarily focused on economic objectives—insufficient to meet the growing demands for flexible scheduling and dynamic response. To address these challenges, this paper proposes an adaptive multi-objective energy management strategy that accounts for the distinct operational… More >

  • Open Access

    ARTICLE

    Optimal Evaluation of Photovoltaic Consumption Schemes in Distribution Networks Based on BASS Model for Photovoltaic Installed Capacity Prediction

    Chenyang Fu*, Xinghua Wang, Zilv Li, Xixian Liu, Xiongfei Zhang, Zhuoli Zhao

    Energy Engineering, Vol.122, No.5, pp. 1805-1821, 2025, DOI:10.32604/ee.2025.061172 - 25 April 2025

    Abstract With the large-scale promotion of distributed photovoltaics, new challenges have emerged in the photovoltaic consumption within distribution networks. Traditional photovoltaic consumption schemes have primarily focused on static analysis. However, as the scale of photovoltaic power generation devices grows and the methods of integration diversify, a single consumption scheme is no longer sufficient to meet the actual needs of current distribution networks. Therefore, this paper proposes an optimal evaluation method for photovoltaic consumption schemes based on BASS model predictions of installed capacity, aiming to provide an effective tool for generating and evaluating photovoltaic consumption schemes in… More > Graphic Abstract

    Optimal Evaluation of Photovoltaic Consumption Schemes in Distribution Networks Based on BASS Model for Photovoltaic Installed Capacity Prediction

  • Open Access

    ARTICLE

    Multi-Objective Approaches for Optimizing 37-Bus Power Distribution Systems with Reconfiguration Technique: From Unbalance Current & Voltage Factor to Reliability Indices

    Murat Cikan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 673-721, 2025, DOI:10.32604/cmes.2025.061699 - 11 April 2025

    Abstract This study examines various issues arising in three-phase unbalanced power distribution networks (PDNs) using a comprehensive optimization approach. With the integration of renewable energy sources, increasing energy demands, and the adoption of smart grid technologies, power systems are undergoing a rapid transformation, making the need for efficient, reliable, and sustainable distribution networks increasingly critical. In this paper, the reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic algorithms. Among these advanced search algorithms, the Bonobo Optimizer (BO) has demonstrated superior performance in handling the complexities of unbalanced power… More >

  • Open Access

    ARTICLE

    Bilevel Planning of Distribution Networks with Distributed Generation and Energy Storage: A Case Study on the Modified IEEE 33-Bus System

    Haoyuan Li, Lingling Li*

    Energy Engineering, Vol.122, No.4, pp. 1337-1358, 2025, DOI:10.32604/ee.2025.060105 - 31 March 2025

    Abstract Rational distribution network planning optimizes power flow distribution, reduces grid stress, enhances voltage quality, promotes renewable energy utilization, and reduces costs. This study establishes a distribution network planning model incorporating distributed wind turbines (DWT), distributed photovoltaics (DPV), and energy storage systems (ESS). K-means++ is employed to partition the distribution network based on electrical distance. Considering the spatiotemporal correlation of distributed generation (DG) outputs in the same region, a joint output model of DWT and DPV is developed using the Frank-Copula. Due to the model’s high dimensionality, multiple constraints, and mixed-integer characteristics, bilevel programming theory is… More >

  • Open Access

    ARTICLE

    Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles

    Chenxu Wang*, Jing Bian, Rui Yuan

    Energy Engineering, Vol.122, No.3, pp. 985-1003, 2025, DOI:10.32604/ee.2025.059559 - 07 March 2025

    Abstract Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load, a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed. Firstly, the k-medoids clustering algorithm is used to divide the reduced power scene into periods. Then, the discrete variables and continuous variables are optimized in the same period of time. Finally, the number of input groups of parallel capacitor banks (CB) in multiple periods is fixed, and then the secondary static reactive power optimization correction is carried out by… More >

Displaying 1-10 on page 1 of 66. Per Page