Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Solutions for periodically distributed materials with localised imperfections

    M. Patrício1, R. Mattheij2, G. de With3

    CMES-Computer Modeling in Engineering & Sciences, Vol.38, No.2, pp. 89-118, 2008, DOI:10.3970/cmes.2008.038.089

    Abstract The behaviour of composite materials with periodically distributed constituents is considered. Mathematically, this can be described by a boundary value problem with highly oscillatory coefficient functions. An algorithm is proposed to handle the case when the underlying periodicity is locally disturbed. This procedure is constructed using fundamental concepts from homogenisation theory and domain decomposition techniques. Applications to layered materials are considered. More >

  • Open Access

    ARTICLE

    Symmetric Variational Formulation of BIE for Domain Decomposition Problems in Elasticity -- An SGBEM Approach for Nonconforming Discretizations of Curved Interfaces

    R. Vodička1, V. Mantič2, F. París2

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.3, pp. 173-204, 2007, DOI:10.3970/cmes.2007.017.173

    Abstract An original approach to solve domain decomposition problems by the symmetric Galerkin boundary element method is developed. The approach, based on a new variational principle for such problems, yields a fully symmetric system of equations. A natural property of the proposed approach is its capability to deal with nonconforming discretizations along straight and curved interfaces, allowing in this way an independent meshing of non-overlapping subdomains to be performed. Weak coupling conditions of equilibrium and compatibility at an interface are obtained from the critical point conditions of the energy functional. Equilibrium is imposed through local traction (Neumann) boundary conditions prescribed on… More >

  • Open Access

    ARTICLE

    Wave Propagation around Thin Structures using the MFS

    L. Godinho A. 1, A. Tadeu1, P. Amado Mendes1

    CMC-Computers, Materials & Continua, Vol.5, No.2, pp. 117-128, 2007, DOI:10.3970/cmc.2007.005.117

    Abstract This paper presents a strategy for using the Method of Fundamental Solutions (MFS) to model the propagation of elastic waves around thin structures, like empty cracks or thin rigid screens, located in a homogeneous elastic medium. The authors make use of a simple approach for modeling these propagation conditions using the MFS together with decomposition of the domain into distinct regions. This approach makes it possible to avoid the undetermined system of equations that arises from imposing boundary conditions at both sides of a thin structure. The numerical implementation of the MFS is performed in the frequency domain, making use… More >

Displaying 21-30 on page 3 of 23. Per Page