Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (231)
  • Open Access

    REVIEW

    A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT

    Yifan Liu1, Shancang Li1,*, Xinheng Wang2, Li Xu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1233-1261, 2024, DOI:10.32604/cmes.2024.046473

    Abstract The Industrial Internet of Things (IIoT) has brought numerous benefits, such as improved efficiency, smart analytics, and increased automation. However, it also exposes connected devices, users, applications, and data generated to cyber security threats that need to be addressed. This work investigates hybrid cyber threats (HCTs), which are now working on an entirely new level with the increasingly adopted IIoT. This work focuses on emerging methods to model, detect, and defend against hybrid cyber attacks using machine learning (ML) techniques. Specifically, a novel ML-based HCT modelling and analysis framework was proposed, in which regularisation and Random Forest were More >

  • Open Access

    CORRECTION

    Correction: Micro-Locational Fine Dust Prediction Utilizing Machine Learning and Deep Learning Models

    Seoyun Kim1,#, Hyerim Yu2,#, Jeewoo Yoon1,3, Eunil Park1,2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 861-861, 2024, DOI:10.32604/csse.2024.053659

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Machine Learning Empowered Security and Privacy Architecture for IoT Networks with the Integration of Blockchain

    Sohaib Latif1,*, M. Saad Bin Ilyas1, Azhar Imran2, Hamad Ali Abosaq3, Abdulaziz Alzubaidi4, Vincent Karovič Jr.5

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 353-379, 2024, DOI:10.32604/iasc.2024.047080

    Abstract The Internet of Things (IoT) is growing rapidly and impacting almost every aspect of our lives, from wearables and healthcare to security, traffic management, and fleet management systems. This has generated massive volumes of data and security, and data privacy risks are increasing with the advancement of technology and network connections. Traditional access control solutions are inadequate for establishing access control in IoT systems to provide data protection owing to their vulnerability to single-point OF failure. Additionally, conventional privacy preservation methods have high latency costs and overhead for resource-constrained devices. Previous machine learning approaches were… More >

  • Open Access

    ARTICLE

    Design Pattern and Challenges of Federated Learning with Applications in Industrial Control System

    Hina Batool1, Jiuyun Xu1,*, Ateeq Ur Rehman2, Habib Hamam3,4,5,6

    Journal on Artificial Intelligence, Vol.6, pp. 105-128, 2024, DOI:10.32604/jai.2024.049912

    Abstract Federated Learning (FL) appeared as an encouraging approach for handling decentralized data. Creating a FL system needs both machine learning (ML) knowledge and thinking about how to design system software. Researchers have focused a lot on the ML side of FL, but have not paid enough attention to designing the software architecture. So, in this survey, a set of design patterns is described to tackle the design issues. Design patterns are like reusable solutions for common problems that come up when designing software architecture. This paper focuses on (1) design patterns such as architectures, frameworks,… More >

  • Open Access

    ARTICLE

    The Effect of Key Nodes on the Malware Dynamics in the Industrial Control Network

    Qiang Fu1, Jun Wang1,*, Changfu Si1, Jiawei Liu2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 329-349, 2024, DOI:10.32604/cmc.2024.048117

    Abstract As industrialization and informatization become more deeply intertwined, industrial control networks have entered an era of intelligence. The connection between industrial control networks and the external internet is becoming increasingly close, which leads to frequent security accidents. This paper proposes a model for the industrial control network. It includes a malware containment strategy that integrates intrusion detection, quarantine, and monitoring. Based on this model, the role of key nodes in the spread of malware is studied, a comparison experiment is conducted to validate the impact of the containment strategy. In addition, the dynamic behavior of… More >

  • Open Access

    ARTICLE

    Enhancing the Performance of Polylactic Acid (PLA) Reinforcing with Sawdust, Rice Husk, and Bagasse Particles

    A. MADHAN KUMAR1, K. JAYAKUMAR2,*, M. SHALINI3

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 269-281, 2022, DOI:10.32381/JPM.2022.39.3-4.7

    Abstract Polylactic acid (PLA) is the most popular thermoplastic biopolymer providing a stiffness and strength alternative to fossil-based plastics. It is also the most promising biodegradable polymer on the market right now, thus gaining a substitute for conservative artificial polymers. Therefore, the current research focuses on synthesizing and mechanical characterization of particlereinforced PLA composites. The hot compression molding technique was used to fabricate PLA-based composites with 0, 2.5, 5, and 7.5 weight % of sawdust, rice husk, and bagasse particle reinforcements to enhance the performance of the PLA. The pellets of PLA matrix were taken with… More >

  • Open Access

    ARTICLE

    SAM Era: Can It Segment Any Industrial Surface Defects?

    Kechen Song1,2,*, Wenqi Cui2, Han Yu1, Xingjie Li1, Yunhui Yan2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3953-3969, 2024, DOI:10.32604/cmc.2024.048451

    Abstract Segment Anything Model (SAM) is a cutting-edge model that has shown impressive performance in general object segmentation. The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model. Due to its superior performance in general object segmentation, it quickly gained attention and interest. This makes SAM particularly attractive in industrial surface defect segmentation, especially for complex industrial scenes with limited training data. However, its segmentation ability for specific industrial scenes remains unknown. Therefore, in this work, we select three representative and complex industrial surface defect detection scenarios, namely strip steel More >

  • Open Access

    ARTICLE

    Micro-Locational Fine Dust Prediction Utilizing Machine Learning and Deep Learning Models

    Seoyun Kim1,#, Hyerim Yu2,#, Jeewoo Yoon1,3, Eunil Park1,2,*

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 413-429, 2024, DOI:10.32604/csse.2023.041575

    Abstract Given the increasing number of countries reporting degraded air quality, effective air quality monitoring has become a critical issue in today’s world. However, the current air quality observatory systems are often prohibitively expensive, resulting in a lack of observatories in many regions within a country. Consequently, a significant problem arises where not every region receives the same level of air quality information. This disparity occurs because some locations have to rely on information from observatories located far away from their regions, even if they may be the closest available options. To address this challenge, a… More >

  • Open Access

    ARTICLE

    Method for Detecting Industrial Defects in Intelligent Manufacturing Using Deep Learning

    Bowen Yu, Chunli Xie*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1329-1343, 2024, DOI:10.32604/cmc.2023.046248

    Abstract With the advent of Industry 4.0, marked by a surge in intelligent manufacturing, advanced sensors embedded in smart factories now enable extensive data collection on equipment operation. The analysis of such data is pivotal for ensuring production safety, a critical factor in monitoring the health status of manufacturing apparatus. Conventional defect detection techniques, typically limited to specific scenarios, often require manual feature extraction, leading to inefficiencies and limited versatility in the overall process. Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes. Our… More >

  • Open Access

    ARTICLE

    An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN

    Zhihua Liu, Shengquan Liu*, Jian Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 411-433, 2024, DOI:10.32604/cmc.2023.046237

    Abstract Network intrusion detection systems (NIDS) based on deep learning have continued to make significant advances. However, the following challenges remain: on the one hand, simply applying only Temporal Convolutional Networks (TCNs) can lead to models that ignore the impact of network traffic features at different scales on the detection performance. On the other hand, some intrusion detection methods consider multi-scale information of traffic data, but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features. To address both of these issues, we propose a hybrid Convolutional Neural Network that supports… More >

Displaying 1-10 on page 1 of 231. Per Page