Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (754)
  • Open Access

    ARTICLE

    Structural and Helix Reversal Defects of Carbon Nanosprings: A Molecular Dynamics Study

    Alexander V. Savin1,2, Elena A. Korznikova3,4, Sergey V. Dmitriev5,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072786 - 09 December 2025

    Abstract Due to their chiral structure, carbon nanosprings possess unique properties that are promising for nanotechnology applications. The structural transformations of carbon nanosprings in the form of spiral macromolecules derived from planar coronene and kekulene molecules (graphene helicoids and spiral nanoribbons) are analyzed using molecular dynamics simulations. The interatomic interactions are described by a force field including valence bonds, bond angles, torsional and dihedral angles, as well as van der Waals interactions. While the tension/compression of such nanosprings has been analyzed in the literature, this study investigates other modes of deformation, including bending and twisting. Depending… More >

  • Open Access

    ARTICLE

    Mechanisms of Pore-Grain Boundary Interactions Influencing Nanoindentation Behavior in Pure Nickel: A Molecular Dynamics Study

    Chen-Xi Hu1, Wu-Gui Jiang1,*, Jin Wang1, Tian-Yu He2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.068655 - 10 November 2025

    Abstract THE mechanical response and deformation mechanisms of pure nickel under nanoindentation were systematically investigated using molecular dynamics (MD) simulations, with a particular focus on the novel interplay between crystallographic orientation, grain boundary (GB) proximity, and pore characteristics (size/location). This study compares single-crystal nickel models along [100], [110], and [111] orientations with equiaxed polycrystalline models containing 0, 1, and 2.5 nm pores in surface and subsurface configurations. Our results reveal that crystallographic anisotropy manifests as a 24.4% higher elastic modulus and 22.2% greater hardness in [111]-oriented single crystals compared to [100]. Pore-GB synergistic effects are found More >

  • Open Access

    ARTICLE

    Neuro-Fuzzy Computational Dynamics of Reactive Hybrid Nanofluid Flow Inside a Squarely Elevated Riga Tunnel with Ramped Thermo-Solutal Conditions under Strong Electromagnetic Rotation

    Asgar Ali1,*, Nayan Sardar2, Poly Karmakar3, Sanatan Das4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3563-3626, 2025, DOI:10.32604/cmes.2025.074082 - 23 December 2025

    Abstract Hybrid nanofluids have gained significant attention for their superior thermal and rheological characteristics, offering immense potential in energy conversion, biomedical transport, and electromagnetic flow control systems. Understanding their dynamic behavior under coupled magnetic, rotational, and reactive effects is crucial for the development of efficient thermal management technologies. This study develops a neuro-fuzzy computational framework to examine the dynamics of a reactive Cu–TiO2–H2O hybrid nanofluid flowing through a squarely elevated Riga tunnel. The governing model incorporates Hall and ion-slip effects, thermal radiation, and first-order chemical reactions under ramped thermo-solutal boundary conditions and rotational electromagnetic forces. Closed-form analytical… More >

  • Open Access

    ARTICLE

    Structural and Vibration Characteristics of Rotating Packed Beds System for Carbon Capture Applications Using Finite Element Method

    Yunjun Lee1, Sanggyu Cheon2, Woo Chul Chung1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3381-3403, 2025, DOI:10.32604/cmes.2025.073729 - 23 December 2025

    Abstract The application of carbon capture systems on ships is technically constrained by limited onboard space and the weight of the conventional absorption tower. The rotating packed bed (RPB) has emerged as a promising alternative due to its small footprint and high mass transfer performance. However, despite its advantages, the structural and vibration stability of RPBs at high rotational speed remains insufficiently studied, and no international design standards currently exist for RPBs. To address this gap, this study performed a comprehensive finite element analysis (FEA) using ANSYS to investigate the structural and dynamic characteristics of an… More >

  • Open Access

    ARTICLE

    Design and synthesis of diketopyrrolopyrrole-CdS hybrid nanostructures for enhanced photovoltaic applications

    Q. Fei1,*, B. Jin2, B. C. Jiang3, J. S. Huang4, L. Li5

    Chalcogenide Letters, Vol.22, No.8, pp. 693-705, 2025, DOI:10.15251/CL.2025.228.693

    Abstract An innovative hybrid nanostructure composed of diketopyrrolopyrrole (DPP) oligomers and cadmium sulfide (CdS) nanoparticles was developed to enhance the efficiency of organic– inorganic photovoltaic devices. The DPP-CdS hybrids were synthesized via a solution-phase mixing method, resulting in uniform nanoparticle dispersion along polymer fibrils and strong interfacial coupling. Structural characterization confirmed the coexistence of crystalline CdS domains and partially ordered DPP phases, while spectroscopic analyses indicated notable redshifts and band broadening, evidencing electronic interactions at the interface. The hybrid material displayed significantly broadened light absorption across the 400–700 nm range and an optimized optical bandgap of… More >

  • Open Access

    ARTICLE

    Theoretical exploration of the structure and physical properties of AgAlSe2

    T. J. Lia,*, Y. Yuea, L. P. Qua, H. J. Houb, S. H. Fanb, H. L. Guoc, S. R. Zhangd

    Chalcogenide Letters, Vol.22, No.10, pp. 917-927, 2025, DOI:10.15251/CL.2025.2210.917

    Abstract The material AgAlSe2, which adopts a chalcopyrite crystal structure, has attracted significant attention owing to its promising functional properties. To further explore its characteristics, theoretical method was conducted to explore its elastic behavior, electronic structure, dynamic stability, and thermodynamic features. The lattice parameters and elastic constants obtained through simulation agrees well with the reported data. Additionally, the mechanical stability of AgAlSe2 was assessed through its elastic constants, confirming its structural integrity. Electronic property analysis reveals that AgAlSe2 exhibits semiconducting behavior, featuring a direct band gap of approximately 1.1377 eV. More >

  • Open Access

    ARTICLE

    MHD Thermosolutal Flow in Casson-Fluid Microchannels: Taguchi–GRA–PCA Optimization

    Amina Mahreen1, Fateh Mebarek-Oudina2,3,4,*, Amna Ashfaq1, Jawad Raza1, Sami Ullah Khan5, Hanumesh Vaidya6

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2829-2853, 2025, DOI:10.32604/fdmp.2025.072492 - 01 December 2025

    Abstract Understanding the complex interaction between heat and mass transfer in non-Newtonian microflows is essential for the development and optimization of efficient microfluidic and thermal management systems. This study investigates the magnetohydrodynamic (MHD) thermosolutal convection of a Casson fluid within an inclined, porous microchannel subjected to convective boundary conditions. The nonlinear, coupled equations governing momentum, energy, and species transport are solved numerically using the MATLAB bvp4c solver, ensuring high numerical accuracy and stability. To identify the dominant parameters influencing flow behavior and to optimize transport performance, a comprehensive hybrid optimization framework—combining a modified Taguchi design, Grey… More >

  • Open Access

    ARTICLE

    Influence of Nozzle Geometry and Operating Parameters on High-Pressure Water Jets

    Yuxin Wang1, Youjiang Wang2, Jieping Wang2, Chao Zhang1,*, Fanguang Meng3, Linhua Zhang1, Yongxing Song1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2761-2777, 2025, DOI:10.32604/fdmp.2025.072236 - 01 December 2025

    Abstract High-pressure water jet technology has emerged as a highly effective method for removing industrial-scale deposits from pipelines, offering a clean, efficient, and environmentally sustainable alternative to conventional mechanical or chemical cleaning techniques. Among the many parameters influencing its performance, the geometry of the nozzle plays a decisive role in governing jet coherence, impact pressure distribution, and overall cleaning efficiency. In this study, a comprehensive numerical and experimental investigation is conducted to elucidate the influence of nozzle geometry on the behavior of high-pressure water jets. Using Computational Fluid Dynamics (CFD) simulations based on the Volume of… More >

  • Open Access

    ARTICLE

    CFD Analysis of Corrugated Plate Designs to Improve Heat Transfer Efficiency in Plate Heat Exchangers

    Kashif Ahmed Soomro1,2,3,*, Rahool Rai1,3,4, S. R. Qureshi2, Sudhakar Kumarasamy4,5,6, Abdul Hameed Memon1, Rabiya Jamil1

    Energy Engineering, Vol.122, No.12, pp. 4857-4872, 2025, DOI:10.32604/ee.2025.069847 - 27 November 2025

    Abstract Plate heat exchangers suffer from significant energy losses, which adversely affect the overall efficiency of thermal systems. To address this challenge, various heat transfer enhancement techniques have been investigated. Notably, the incorporation of surface corrugations is widely recognized as both effective and practical. Chevron corrugation is the most employed design. However, there remains a need to investigate alternative geometries that may offer superior performance. This study aims to find a novel corrugation design by conducting a comparative CFD analysis of flat, square, chevron, and cylindrical corrugated surfaces, assessing their impact on heat transfer enhancement within… More > Graphic Abstract

    CFD Analysis of Corrugated Plate Designs to Improve Heat Transfer Efficiency in Plate Heat Exchangers

  • Open Access

    ARTICLE

    A Hybrid Machine Learning and Fractional-Order Dynamical Framework for Multi-Scale Prediction of Breast Cancer Progression

    David Amilo1,*, Khadijeh Sadri1, Evren Hincal1,2, Mohamed Hafez3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2189-2222, 2025, DOI:10.32604/cmes.2025.070298 - 26 November 2025

    Abstract Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction. We present a hybrid framework that integrates machine learning (ML) and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales. On the Wisconsin Diagnostic Breast Cancer dataset, seven ML algorithms were evaluated, with deep neural networks (DNNs) achieving the highest accuracy (97.72%). Key morphological features (area, radius, texture, and concavity) were identified as top malignancy predictors, aligning with clinical intuition. Beyond static classification, we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression. The model revealed clinically interpretable patterns: More >

Displaying 1-10 on page 1 of 754. Per Page