Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Nonlinear Micromechanical Modelling of Transverse Tensile Damage Behavior in Fiber-Reinforced Polymer Composites

    Nian Li*

    Structural Durability & Health Monitoring, Vol.13, No.4, pp. 331-346, 2019, DOI:10.32604/sdhm.2019.07521

    Abstract The investigation focusing on the mechanical behaviors at the microstructural level in composite materials can provide valuable insight into the failure mechanisms at larger scales. A micromechanics damage model which comprises the coupling of the matrix constitutive model and the cohesive zone (CZM) model at fiber-matrix interfaces is presented to evaluate the transverse tensile damage behaviors of unidirectional (UD) fiber-reinforced polymer (FRP) composites. For the polymeric matrix that exhibits highly non-linear mechanical responses, special focus is paid on the formulation of the constitutive model, which characterizes a mixture of elasticity, plasticity as well as damage. The proposed constitutive model includes… More >

  • Open Access

    ABSTRACT

    Application of Gaussian Approximating Functions to the Solution of the Second Boundary Value Problem of Elasto-Plasticity for 2D Isotropic Bodies

    V. Romero1, S. Kanaun2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.4, pp. 233-242, 2007, DOI:10.3970/icces.2007.003.233

    Abstract In this work Gaussian approximating functions proposed in the works of V. Maz'ya are used for the solution of the integral equations of elasto-plasticity for isotropic bodies. The use of this functions esentially simplify the calculation of the elements of the final matrix of the linear algebraic equations of the discretized problem. The elements of this matrix turn to be a combination of simple elementary functions. The method is applied to a 2D rectangular body that has a cut on a border and is subjected to axial tension. The convergence of the method is studied on this example. More >

  • Open Access

    ARTICLE

    Modelling Elasto-Plasticity Using the Hybrid MLPG Method

    Claire Heaney1,2, Charles Augarde2, Andrew Deeks2

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.2, pp. 153-178, 2010, DOI:10.3970/cmes.2010.056.153

    Abstract Meshless methods continue to generate strong interest as alternatives to conventional finite element methods. One major area of application as yet relatively unexplored with meshless methods is elasto-plasticity. In this paper we extend a novel numerical method, based on the Meshless Local Petrov-Galerkin (MLPG) method, to the modelling of elasto-plastic materials. The extended method is particularly suitable for problems in geomechanics, as it permits inclusion of infinite boundaries, and is demonstrated here on footing problems. The current usage of meshless methods for problems involving plasticity is reviewed and guidance is provided in the choice of various modelling parameters. More >

Displaying 1-10 on page 1 of 3. Per Page